2982: combination

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 510  Solved: 316

Description

LMZn个不同的基友,他每天晚上要选m个进行[河蟹],而且要求每天晚上的选择都不一样。那么LMZ能够持续多少个这样的夜晚呢?当然,LMZ的一年有10007天,所以他想知道答案mod 10007的值。(1<=m<=n<=200,000,000)

Input

  第一行一个整数t,表示有t组数据。(t<=200)
  接下来t行每行两个整数n, m,如题意。

Output

T行,每行一个数,为C(n, m) mod 10007的答案。

Sample Input

4
5 1
5 2
7 3
4 2

Sample Output

5
10
35
6

HINT

Source

【分析】

  卢卡斯定理裸题。。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL long long
#define Maxn 11000
const int Mod=; int pw[Maxn],inv[Maxn]; void init()
{
pw[]=;for(int i=;i<=Mod;i++) pw[i]=1LL*pw[i-]*i%Mod;
inv[]=;for(int i=;i<=Mod;i++) inv[i]=1LL*(Mod-Mod/i)*inv[Mod%i]%Mod;
inv[]=;for(int i=;i<=Mod;i++) inv[i]=1LL*inv[i-]*inv[i]%Mod;
} int get_c(int n,int m)
{
if(n<m) return ;
return 1LL*pw[n]*inv[n-m]%Mod*inv[m]%Mod;
} int lucas(int n,int m)
{
if(n<m) return ;
int ans=;
while(n&&m)
{
ans=1LL*ans*get_c(n%Mod,m%Mod)%Mod;
n/=Mod;m/=Mod;
}
return ans;
} int main()
{
int T;
scanf("%d",&T);
init();
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
printf("%d\n",lucas(n,m));
}
return ;
}

2017-04-16 16:27:16

【BZOJ 2982】 2982: combination (卢卡斯定理)的更多相关文章

  1. bzoj2982 combination——卢卡斯定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2982 卢卡斯定理裸题: 原准备1A来着,结果输出忘了加回车! 预处理阶乘或者现求都可以,感觉 ...

  2. bzoj 3782 上学路线 卢卡斯定理 容斥 中国剩余定理 dp

    LINK:上学路线 从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模. \(1\leq N,M\leq 10^10 0\leq T\leq 200\) p=10000 ...

  3. bzoj 4403 序列统计 卢卡斯定理

    4403:序列统计 Time Limit: 3 Sec  Memory Limit: 128 MB Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调 ...

  4. BZOJ 2982 combination Lucas定理

    题目大意:发上来就过不了审核了--总之大意就是求C(n,m) mod 10007 m,n∈[1,2*10^8] 卢卡斯定理:C(n,m)=C(n%p,m%p)*C(n/p,m/p) mod p 要求p ...

  5. 【BZOJ 4403】 4403: 序列统计 (卢卡斯定理)

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 653  Solved: 320 Description 给定三个正整数N.L和R, ...

  6. 【BZOJ 1272】 1272: [BeiJingWc2008]Gate Of Babylon (容斥原理+卢卡斯定理)

    1272: [BeiJingWc2008]Gate Of Babylon Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 254  Solved: 12 ...

  7. 【BZOJ4903】【UOJ#300】吉夫特(卢卡斯定理,动态规划)

    [BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑 ...

  8. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  9. 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)

    [BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...

随机推荐

  1. python Multiprocessing 多进程应用

    在运维工作中,经常要处理大量数据,或者要跑一些时间比较长的任务,可能都需要用到多进程,不管是管理端下发任务,还是客户端执行任务,如果服务器配置还可以,跑多进程还是挺能解决问题的 Multiproces ...

  2. bzoj 2303 并查集

    首先如果没有限制的话,我们可以直接求出答案,假设对于n*m的矩阵,我们最上方一行和左方的一列随意确定,那么首先这写确定的状态肯定是不会不合法的,因为我们可以调整剩下的01状态来使得这一行一列的状态合法 ...

  3. 二进制、十进制、十六进制(python)

    int(“x”,base=2/8/16)是把x都转换成十进制 二进制: 1111=1*2的3次方+1*2的2次方+1*2的1次方+1*2的0次方  =8+4+2+1=15 1000=1*2的3次方+0 ...

  4. Linux CGI编程基础【整理】

    Linux CGI编程基础 1.为什么使用CGI? 如前面所见,任何的HTML均是静态网页,它无法实现一些复杂的功能,而CGI可以为我们实现.如:a.列出服务器上某个目录中的文件,对目录中的文件进行操 ...

  5. URAL题解二

    URAL题解二 URAL 1082 题目描述:输出程序的输入数据,使得程序输出"Beutiful Vasilisa" solution 一开始只看程序的核心部分,发现是求快排的比较 ...

  6. springBoot单元测试-模拟MVC测试

    1)模拟mvc测试,和基础测试是一样的, 都需要在pom文件中引入junit的支持. 略 2)编写测试类 Application1TestMVC 在类头上除啦加入之前的@RunWith(SpringR ...

  7. 基于TCP协议的聊天室控制台版

    我之前写过一篇博客,主要是基于TCP协议实现的聊天室swing版,在此再写一个基于TCP协议实现的聊天室控制台版,便于学习和比较. package 聊天室console版.utils; import ...

  8. PostGreSQL数据库安装配置说明

    windows 10 x64 pro 1703安装postgresql-9.6.3-2-windows-x64.exe数据库,步骤如下: 第一:下载数据库安装程序,下载地址为:https://www. ...

  9. HDU 4553 约会安排(线段树区间合并+双重标记)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4553 题目大意:就是有三种操作: ①DS x,安排一段长度为x的空闲时间跟屌丝一起,输出这段时间的起点 ...

  10. 用socket发送匿名邮件之python实现

    发送邮件可以用smtp协议,整个过程为: 用户代理(user-agent,比如outlook.foxmail等邮件客户端)---(smtp协议)--->本地邮件服务器 --- (smtp协议)- ...