Python中基本的读文件和简单数据处理
Python中基本的读文件和简单数据处理
DataQuest上面的免费课程(本文是Python基础课程部分),里面有些很基础的东西(csv文件读,字符串预处理等),发在这里做记录。涉及下面六个案例:
- Find the lowest crime rate(读取csv文件,字符串切分,for循环和if判断过滤数据)
- Discover weather pattern in LA(for循环和if判断进行频数统计)
- Building a Spell Checker(词频统计,字符串预处理,字典跑字符串,统计正确错误单词)
- Analyze NFL data(使用CSVmodule导入文件,类,函数,使用字典和list进行简单统计)
- What should you name your kid if you want them to be a US Congressperson?(数据预处理,强制类型转换int(),try-except语句,字典方式统计,转存需要数据)
- Which airline is delayed the most?
- 附录:逐行读取txt文件
案例1 Find the lowest crime rate
(读取csv文件,字符串切分,for循环和if判断过滤数据)
crime_rates.csv是单sheet,73Rows,2Cols的文件。第一列是城市名称(字符串),第二列是犯罪数量(整数)。但是读入Python开始都是字符串,在后面类型转换将字符串形式的犯罪数量强制转换成整型。 并将分隔开转换后的数据存到full_data这个list中,然后使用for循环将犯罪数量最小的城市找出来(if判断,已知犯罪数最小为130),并将这个城市名存入变量city中。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
# We know that the lowest crime rate is 130.
# This is the second column of the data.
# We need to find the corresponding value in the first column -- the city with the lowest crime rate.
# Let's load the csv file
f = open('crime_rates.csv', 'r')
data = f.read()
rows = data.split('\n')
full_data = []
for row in rows:
split_row = row.split(",")
split_row[1] = int(split_row[1])
full_data.append(split_row)
city = ""
lowest_crime_rate = 10000
for item in full_data:
if item[1] == 130:
city = item[0]
|
案例2 Discover weather pattern in LA
(for循环和if判断进行频数统计)
两列数据的文本文件,有表头。导入la_weather.txt文本文件,切分,存入变量weather_data中,去掉表头。使用字典(dictionary)进行不同类型的频数统计。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
weather_data = []
f = open("la_weather.csv", 'r')
data = f.read()
rows = data.split('\n')
for row in rows:
split_row = row.split(",")
weather_data.append(split_row)
print(weather_data)
#去掉表头
weather = weather_data[1:367]
weather_counts = {}
for item in weather:
if item in weather_counts:
weather_counts[item] = weather_counts[item] + 1
else:
weather_counts[item] = 1
print(weather_counts)
|
案例3 Building a Spell Checker
(词频统计,字符串预处理,字典跑字符串,统计正确错误单词)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
# 将字符正规化,对字符进行处理,去掉特殊符号
def normalize(token):
token = token.replace(".","")
token = token.replace(",","")
token = token.replace("'", "")
token = token.replace(";", "")
token = token.replace("\n", "")
token = token.lower()
return token
# 建立一个list用于存放正规的字典
normalized_dictionary_tokens = []
# 只读方式打开一个文件
f = open("dictionary.txt", "r")
raw_data = f.read()
# 按照空格将字符串进行切分,成单个单词
data = raw_data.split(" ")
# 遍历切分后的单词,进行正规化处理(def normalize,去掉特殊符号)
for token in data:
normalized_dictionary_tokens.append(normalize(token))
print(normalized_dictionary_tokens)
#统计正确单词和错误单词的词频。用一个正确单词的字典来遍历这个字符串,并进行统计
potential_misspellings = []
correctly_spelled = []
for token in normalized_story_tokens:
if token in normalized_dictionary_tokens:
correctly_spelled.append(token)
else:
potential_misspellings.append(token)
print(correctly_spelled)
print(potential_misspellings)
|
案例4 Analyze NFL data
(使用CSVmodule导入文件,类,函数,使用字典和list进行简单统计)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
import csv
class Team():
def __init__(self, name):
self.name = name
f = open("nfl.csv", 'r')
csvreader = csv.reader(f)
self.nfl = list(csvreader)
def count_total_wins(self):
count = 0
for row in self.nfl:
if row[2] == self.name:
count = count + 1
return count
def wins_by_years(self):
wins = {}
years = ["2009", "2010", "2011", "2012", "2013"]
for year in years:
count = 0
for row in self.nfl:
if row[2] == self.name and row[0] == year:
count += 1
wins[year] = count
return wins
niners = Team("San Francisco 49ers")
niners_wins_by_year = niners.wins_by_years()
print("Niners_wins_by_year: ", niners_wins_by_year)
|
案例5 What should you name your kid if you want them to be a US Congressperson?
(数据预处理,强制类型转换int(),try-except语句,字典方式统计,转存需要数据)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
|
# legislators变量是一个2维list,大list里的其中一个list(条目)是一个有7个元素组成的(姓,名,出生年月日,未知,未知,未知)。我们要做的是这一组数据进行预处理,然后进行姓名的统计。
genders_list = []
unique_genders = set()
unique_genders_list = []
# 将性别数据以append方式挨个读入list变量genders_list中去
for row in legislators:
genders_list.append(row[3])
# genders_list变量使用set()函数进行元素去重变为字典,并存入字典变量unique_genders中,将去重后的结果再存储成list类型数据搭配到变量unique_genders_list
unique_genders = set(genders_list)
unique_genders_list = list(unique_genders)
print(genders_list)
# 已知性别数据的错误值为"",将其重赋值为“M”
for row in legislators:
if row[3] == "":
row[3] = "M"
# 统计出生年份存入list变量birth_years中。其中需要使用split方法对list中的某个元素进行切分,取其中第一个元素(即年),以append追加的方法存入list变量birth_years中
birth_years = []
for row in legislators:
birth_list = []
birth_list = row[2].split("-")
birth_years.append(birth_list[0])
# 对list变量进行enumerate()函数操作(得到下标和所在的当前row)类似对字典进行.item()方法(得到key和对应的value)。
# 将年份存入list变量legislators中每行的第八列,按照append追加的方法
for i, row in enumerate(legislators):
row.append(birth_years[i])
# 将legislatros变量的第八列元素(出生年份)的字符串类型,强制类型转换成int类型。如遇到强制转换错误就将出生年份值变为0
for row in legislators:
try:
row[7] = int(row[7])
except Exception:
row[7] = 0
# 用字典进行姓名统计(key为姓名,value为出现次数)存入male_name_counts字典变量中。并将出现次数最多的名字(同样是最大出现次数,但名字不止一个),将这些名字存入list变量top_male_names中
top_male_names = []
male_name_counts = {}
# 用字典进行姓名统计,条件是出生年份大于1940,并且是女性
for row in legislators:
if row[7] > 1940 and row[3] == "M":
if row[1] in male_name_counts:
male_name_counts[row[1]] += 1
else:
male_name_counts[row[1]] = 1
# 找出名字出现最多的次数highest_value
highest_value = None
for key, value in male_name_counts.items():
if highest_value is None or value > highest_value:
highest_value = value
# 将名字次数出现最多的名字(同样是最大出现次数,但名字不止一个),将这些名字以追加append的方式存入list变量top_male_names中
for key, value in male_name_counts.items():
if value == highest_value:
top_male_names.append(key)
|
案例6 Which airline is delayed the most?
这个案例来来回回做了好几天,反正基本上大都是参考答案做过的……酱油了……
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
def column_number_from_name(column_name):
column_number = None
for i, column in enumerate(column_names):
if column == column_name:
column_number = i
return column_number
def find_average_delay(carrier_name=None):
total_delayed_flights = 0
total_delay_time = 0
delay_time_column = column_number_from_name("arr_delay")
delay_number_column = column_number_from_name("arr_del15")
carrier_column = column_number_from_name("carrier")
for row in flight_delays:
if carrier_name is None or row[carrier_column] == carrier_name:
total_delayed_flights += float(row[delay_number_column])
total_delay_time += float(row[delay_time_column])
return total_delay_time / total_delayed_flights
delays_by_carrier = {}
carrier_column = column_number_from_name("carrier")
carriers = [row[carrier_column] for row in flight_delays]
unique_carriers = list(set(carriers))
for carrier in unique_carriers:
delays_by_carrier[carrier] = find_average_delay(carrier)
print(delays_by_carrier)
|
附录1 逐行读取txt文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
# 方法一
f = open("foo.txt") # 返回一个文件对象
line = f.readline() # 调用文件的 readline()方法
while line:
print line, # 后面跟 ',' 将忽略换行符
# print(line, end = '') # 在 Python 3中使用
line = f.readline()
f.close()
# 方法二
for line in open("foo.txt"):
print line
# 方法三
f = open("c:\\1.txt","r")
lines = f.readlines() #读取全部内容
for line in lines
print line
|
Python中基本的读文件和简单数据处理的更多相关文章
- python中使用xlrd读excel使用xlwt写excel
原文地址 :http://www.bugingcode.com/blog/python_xlrd_read_excel_xlwt_write_excel.html 在数据分析和运营的过程中,有非常多的 ...
- java中多种方式读文件
转自:http://www.jb51.net/article/16396.htm java中多种方式读文件 一.多种方式读文件内容. 1.按字节读取文件内容 2.按字符读取文件内容 3.按行读取文件内 ...
- python中判断readline读到文件末尾
fp = open('somefile.txt') while True: line = fp.readline() if not line: #等价于if line == "": ...
- Python中yaml和json文件的读取和应用
Python对yaml和json文件的读取: yaml文件读取: 首先创建一个yaml文件test.yaml import yaml #引入包 f=open(path) #建立Python的文件 ...
- Python中属性和描述符的简单使用
Python的描述符和属性是接触到Python核心编程中一个比较难以理解的内容,自己在学习的过程中也遇到过很多的疑惑,通过google和阅读源码,现将自己的理解和心得记录下来,也为正在为了该问题苦恼的 ...
- Python中通过open()操作文件时的文件中文名乱码问题
最近在用Python进行文件操作的时候,遇到创建中文文件名的乱码问题. Python默认是不支持中文的,一般我们在程序的开头加上#-*-coding:utf-8-*-来解决这个问题,但是在我用open ...
- python中OS模块操作文件和目录
在python中执行和操作目录和文件的操作是通过内置的python OS模块封装的函数实现的. 首先导入模块,并查看操作系统的类型: >>> import os os.name # ...
- python中使用with操作文件,为什么不需要手动关闭?
python中的with关键字,它是用来启动一个对象的上下文管理器的.它的原理是,当我们使用with去通过open打开文件的时候,它会触发文件对象的上下文管理器, 当with中的代码结束完成之后,去自 ...
- Python中time和datetime模块的简单用法
python中与时间相关的一个模块是time模块,datetime模块可以看为是time模块的高级封装. time模块中经常用到的有一下几个方法: time()用来获取时间戳,表示的结果为从1970年 ...
随机推荐
- 20145328 《Java程序设计》第5周学习总结
20145328 <Java程序设计>第5周学习总结 教材学习内容总结 语法和继承架构 异常处理关键字 第八章内容主要是对Java的异常处理 Java的异常处理是通过5个关键字来实现的:t ...
- Spring Cloud OAuth2(二) 扩展登陆方式:账户密码登陆、 手机验证码登陆、 二维码扫码登陆
概要 基于上文讲解的spring cloud 授权服务的搭建,本文扩展了spring security 的登陆方式,增加手机验证码登陆.二维码登陆. 主要实现方式为使用自定义filter. Authe ...
- LeetCode——Coin Change
Question You are given coins of different denominations and a total amount of money amount. Write a ...
- LA 3720 高速公路(互质判斜率)
https://vjudge.net/problem/UVALive-3720 题意: 有一个n行m列的点阵,问一共有多少条非水平非垂直的直线至少穿过其中的两个点. 思路: 没思路的题. 首先枚举矩形 ...
- spring boot 笔记--第三章
spring boot 笔记 第三章,使用Spring boot 构建系统: 强烈建议支持依赖管理的构建系统,Maven或Gradle 依赖管理: Spring Boot的每版本都会提供它支持的依赖列 ...
- quartz动态job工具类 serviceh注入问题
package com.heyi.yanglao.common.job.util; import cn.hutool.core.date.DateUtil; import lombok.extern. ...
- 手机端页面自适应解决方案—rem布局(进阶版,附源码示例)
转自:https://segmentfault.com/a/1190000007350680 一年前笔者写了一篇 <手机端页面自适应解决方案—rem布局>,意外受到很多朋友的关注和喜欢.但 ...
- 2-3 sshd服务---暴力破解应对策略
sshd服务暴力破解步骤 sshd暴力破解方法 防止暴力破解调优 1. 变更默认端口 2. 变更root用户 3. 日志监控-->防止暴力破解(fail2ban应用) fail2ban详解 ...
- UVALive-5713 Qin Shi Huang's National Road System (次小生成树)
题目大意:有n个城市,要修一些路使得任意两个城市都能连通.但是有人答应可以不计成本的帮你修一条路,为了使成本最低,你要慎重选择修哪一条路.假设其余的道路长度为B,那条别人帮忙修的道路两端城市中的总人口 ...
- clientWidth、offsetWidth等介绍
网页可见区域宽:document.body.clientWidth网页可见区域高:document.body.clientHeight网页可见区域宽:document.body.offsetWidth ...