Restriction of Break Point e.g: k=2 说明在所有的dichotomy中,任意两个点不能被shatter(shatter就是能够出现所有种排列组合),即不能出现这两个点的2^k=4种组合。

Bounding function B(N, k):

maximum possible when break point is k.

解释这张图:

如果k=1,则不管N等于多少,B都等于1,即H set要满足只有一个点都不能被shatter,即dichotomy set的大小不超过1。所以有+1就不能有-1,所以dichotomy set最多只能有1个dichotomy。所以B=1,第一列都为1. 如果N<k,即右上三角的部分,此时:任意k个点不能被shatter,即dichotomy set里面,对于那k个点不能出现2^k个组合。这个条件有和没有一样。所以右上三角的B值就为2^N。 如果N=k,当它们都等于2时,因为N=2不可以被shatter,即dichotomy set的大小要小于2^k=4,所以B(2,2)=3,其他对角线上的值同理,为(2^k)-1。

因此可以看出B是m_H的上限。

现在考虑下三角。 当N=4,k=3。现在有2^4=16种不同的dichotomy,从中选择不同的dichotomy set,有2^16种set,看看有没有违反3个点被shatter的set。通过遍历得到set的解为

所以B(4,3)=11 通过整理可得右上图。前4组,头3个点相同,x4不同。 B(4,3)=11=2alpha + beta。现在把x4去掉,只看x1-x3

这里有alpha+beta个dichotomy on x1-x3。 因为k=3,所以在N=4中任意3个x不能被shatter,包括x1-x3,所以alpha+beta<=B(3,3)。

如果只看alpha部分,在x1-x3内找出两个点,如果这两个点shatter了,加上x4,就变成了3个点shatter,这不满足条件,因此任意的在x1-x3内的两个点也不能shatter,所以alpha<=B(3,2) 所以有

所以:

所以B(N,k)有上限。

又因为B(N,k)是用来bound m_H(N)的,然后B(N,k)的上限是一个关于N的多项式,因此如果存在k的话,m_H(N)是有一个多项式的上限。

接下来用m_H(N)去取代Hoeffding里的M:

Break point and VC bound的更多相关文章

  1. 6 VC维

    1 VC维的定义 VC维其实就是第一个break point的之前的样本容量.标准定义是:对一个假设空间,如果存在N个样本能够被假设空间中的h按所有可能的2的N次方种形式分开,则称该假设空间能够把N个 ...

  2. 【转载】VC维的来龙去脉

    本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number o ...

  3. VC Dimension -衡量模型与样本的复杂度

    (1)定义VC Dimension: dichotomies数量的上限是成长函数,成长函数的上限是边界函数: 所以VC Bound可以改写成: 下面我们定义VC Dimension: 对于某个备选函数 ...

  4. 机器学习基石的泛化理论及VC维部分整理(第六讲)

    第六讲 第五讲主要讲了机器学习可能性,两个问题,(1)\(E_{in} 要和 E_{out}\) 有很接近,(2)\(E_{in}\)要足够小. 对于第一个假设,根据Hoefding's Inequa ...

  5. 机器学习基石的泛化理论及VC维部分整理(第五讲)

    第五讲 Training versus Testing 一.问题的提出 \(P_{\mathcal{D}}\left [ BAD   \mathcal{D} \right ]  \leq 2M \cd ...

  6. VC维度

    ​由vc bound可以知道: $P(\exists h\in H~s.t~|E_{in}(h)-E_{out}(h)|>\epsilon)\\ \leq 4M_H(2N)exp(-\frac{ ...

  7. 机器学习基石7-The VC Dimension

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 前几节课着重介绍了机器能够学习的条件并做了详细的推导和解释.机器能够学习必须满 ...

  8. VC维的来龙去脉——转载

    VC维的来龙去脉——转载自“火光摇曳” 在研究VC维的过程中,发现一篇写的很不错的VC维的来龙去脉的文章,以此转载进行学习. 原文链接,有兴趣的可以参考原文进行研究学习 目录: 说说历史 Hoeffd ...

  9. VC dimension and Model complexity

    可以把growth function m_H(N)的upper bound用N^(k-1)来限制, for N large, k>=3 Thus, 定义: VC Dimension: maxim ...

随机推荐

  1. LA 7272 Promotions(dfs)

    https://vjudge.net/problem/UVALive-7272 题意: 公司要提拔人,现在有n个人,现在有m条有向边,A->B表示A的表现比B好,也就是如果B晋升了,那么A肯定会 ...

  2. spring 或 springboot统一异常处理

    spring 或 springboot统一异常处理https://blog.csdn.net/xzmeasy/article/details/76150370 一,本文介绍spring MVC的自定义 ...

  3. springboot解决开发环境和生产环境不一样的配置问题

    代码: application-dev.yml server: port: gril: cupSize: B age: application-prod.yml server: port: gril: ...

  4. Floyd判圈算法 Floyd Cycle Detection Algorithm

    2018-01-13 20:55:56 Floyd判圈算法(Floyd Cycle Detection Algorithm),又称龟兔赛跑算法(Tortoise and Hare Algorithm) ...

  5. windows系统下,安装多个版本的jdk,java -version

    问题描述: 开始安装了 jdk8 后来装了jdk9,可以为项目配置不同的jdk,相安无事: 今天发现软件需要jdk8的环境,结果我的java -version始终是jdk9.0.1: 解决办法:使ja ...

  6. 浏览器DOM操作

    HTML Node 节点 常用API 高效遍历 DOM Repaint and reflow 插入大量内容避免重绘和回流 style 样式操作 DOM事件 HTML - innerHTML:内部HTM ...

  7. 2017 年你应该尝试的 25 个 Android 库

    1.Lottie 由 Airbnb 推出,支持将 Adobe After Effects 动画通过 Bodymovin 导出成 JSON,并在手机上渲染它们.目前已经有超过 8600 颗 star,相 ...

  8. 1-16-1 LVM管理和ssm存储管理器使用&磁盘配额

    大纲: 1-1- LVM逻辑卷的管理 1-2- SSM管理工具的使用 1-3- 磁盘配额技巧 ====================================== 问题描述: 当我们需要在一个 ...

  9. bzoj 1996 区间dp

    1996: [Hnoi2010]chorus 合唱队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 1727  Solved: 1115[Submit][ ...

  10. DIV+ul+LI实现表格效果以及div带滑动条

    写这个是为了给自己一个好好的笔记,以免下次需要的时候又到处找,费神费事费时费力.开始吧! 1.先看看效果 2.网页代码 <!DOCTYPE html PUBLIC "-//W3C//D ...