CSK & KCF(tracking)
转自:http://blog.csdn.net/ben_ben_niao/article/details/51364323
上次介绍了SRDCF算法,发展历史轨迹为CSK=>>KCF/DCF/CN.鄙人首先介绍最基本的CSK算法,其实在上一篇已经提过,但是原理,思路讲的不清晰,这次争取把思路讲清楚。
CSK:[paper:Exploiting the Circulant Structure of Tracking-by-detection with Kernels(作者和KCF/DCF同一个作者)]
- 文章特点:
- 输入:整个候选search区域的raw pixel(作为特征,并不是每个候选框),label(y_i),label为符合Gauss分布的连续取值
- 目的:训练一个分类器,学习分类器的权重W。
- 求解分类器的权重W,探究了subimage_window和circular struct以及kernel的关系,利用这个关系引入kernel Trick.
- 利用cirlular matrix和来求解分类器的权重,利用FFT以及循环矩阵的性质,避免了求W时的矩阵逆运算。
- 输出:相对平移量,实验选区响应值最大的位置作为目标移动的大小。
- 缺点:
- scale问题。
- 循环矩阵bounding效应(SRDCF解决)。
- 输入为raw gray pixel(KCF,CN,DeepSRDCF丰富了特征的选取).
- details
- 首先,候选框subimage_window存在很多重合,计算特征导致冗余。所以为了满足一定的速度要求,无法Dense sampling,只能random sampling少许,导致结果不好。
- 发现,所有subimage_window可以有候选区域和循环矩阵来表示。设候选区域的特征连接为vector:V,循环矩阵为如下:
all_subimage_window = C(u)V,其实就是一个kernel变换,从候选区域中得到子区域。其实C(u_i),为(1,1,0. ...)等。其实这里作者只是以此说明这个关系,具体在代码中使用时却没那么复杂。
有了上面的发现,则回到tracking问题,跟踪其实就是训练一个分类器:
其中w为分类器的系数,需要学习。引入kernel trick(get the subimage_window):
如果式(1)中的loss function:L取二范数距离,则求解的结果为:
进而转化为求a_i,公式如下:
其中最为关键的是求K为循环矩阵,而选择好对应的核变换函数(线性核,高斯核,多项式核)即可求K,从而得到a_i,及分类器的权重。利用FFT变换,将卷积变换为频域的dot-product,加快速度。
- 核函数的选举有多种,具体看原paper.所以通过这一步一步从而求解出分类器。
KCD/DCF[paper:High-Speed Tracking with Kernelized Correlation Filters],和CSK是同一个作者
这篇文章核心算法同CSK,只是从特征和多尺度以及核变换进行了改进。
- 在CSK的基础上解决了如下几个问题:
- 输入为multi-channels(可以是彩色,可以是Hog),并定义了multi-channel特征的连接方法。
- 采用不同函数,Gauss核函数,paper叫KCF,采用linear kernel时,paper取名叫DCF,其中DCF由于采用的linear-kernel,所以multi-channel合并时有优势,速度比KCF快,效果差一点点。
- detail
多通道特征连接,由于卷积在频域是dot-product的求和,所以将不同channels的特征vector连接在一起为一个vector即可。multi-channel特征可以是彩色,也可以时Hog和及其方向的不同channel.如果时Gauss核(KCF)则核函数计算如paper中式(31),如果时线性核(DCF)则根据式(32)计算。paper中分析了速度方面的影响,linear-kernel的DCF更简单,所以速度更快。
CN[paper:Adaptive Color Attributes for Real-Time Visual Tracking]
- 在CSK的基础上,将输入变为11个颜色空间,具体略
SRDCF见以前的博文
- 在kcf上解决scale[多尺度搜索]和bounding effect[加入惩罚项]
DeepSRDCF
- 在SRDCF基础上 用CNN来提取特征[CNN第一层输出作为特征]
CSK & KCF(tracking)的更多相关文章
- [Object Tracking] Overview of algorithms for Object Tracking
From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...
- KCF:High-Speed Tracking with Kernelized Correlation Filters 的翻译与分析(一)。分享与转发请注明出处-作者:行于此路
High-Speed Tracking with Kernelized Correlation Filters 的翻译与分析 基于核相关滤波器的高速目标跟踪方法,简称KCF 写在前面,之所以对这篇文章 ...
- [Tracking] KCF + KalmanFilter目标跟踪
基于KCF和MobileNet V2以及KalmanFilter的摄像头监测系统 简介 这是一次作业.Tracking这一块落后Detection很多年了,一般认为Detection做好了,那么只要能 ...
- [Object Tracking] Overview of Object Tracking
From: 目标跟踪方法的发展概述 From: 目标跟踪领域进展报告 通用目标的跟踪 经典目标跟踪方法 2010 年以前,目标跟踪领域大部分采用一些经典的跟踪方法,比如 Meanshift.Parti ...
- KCF跟踪算法 入门详解
一.算法介绍 KCF全称为Kernel Correlation Filter 核相关滤波算法.是在2014年由Joao F. Henriques, Rui Caseiro, Pedro Martins ...
- correlation filters in object tracking
http://www.cnblogs.com/hanhuili/p/4266990.html Correlation Filter in Visual Tracking系列一:Visual Objec ...
- KCF目标跟踪方法分析与总结
KCF目标跟踪方法分析与总结 correlation filter Kernelized correlation filter tracking 读"J. F. Henriques, R. ...
- (转)CVPR 2016 Visual Tracking Paper Review
CVPR 2016 Visual Tracking Paper Review 本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...
- Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记
原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...
随机推荐
- 【转】PHPCMS v9 自定义表单添加验证码验证
1. 在 \phpcms\templates\default\formguide\show.html 中添加验证码显示 <input type="text" id=&quo ...
- 三点须知:当我们在开发过程中需要用到分布式缓存Redis的时候
当我们在开发过程中需要用到分布式缓存Redis的时候,我们首先要明白缓存在系统中用来做什么? 1. 少量数据存储,高速读写访问.通过数据全部in-momery 的方式来保证高速访问,同时提供数据落地的 ...
- Codeforces Round #553 (Div. 2) C
C. Problem for Nazar time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Paper Reading - Long-term Recurrent Convolutional Networks for Visual Recognition and Description ( CVPR 2015 )
Link of the Paper: https://arxiv.org/abs/1411.4389 Main Points: A novel Recurrent Convolutional Arch ...
- Java线上应用故障排查之一:高CPU占用 (转)
一个应用占用CPU很高,除了确实是计算密集型应用之外,通常原因都是出现了死循环. (友情提示:本博文章欢迎转载,但请注明出处:hankchen,http://www.blogjava.net/hank ...
- 6. 网络信息API
一.用数值表示socket地址&用名字表示socket地址(socket地址==>IP地址和端口号) 1. 用数值表示socket地址不便于记忆,也不便于扩展(比如从IPv4转移到IPv ...
- Beta冲刺第二周王者荣耀交流协会第三次会议
1.例会照片: 成员王超,高远博,冉华,王磊,王玉玲,任思佳,袁玥全部到齐 master:袁玥 2.时间跨度: 2017年11月19日 17:00 — 17:11,总计11分钟. 3.地 点: 一食堂 ...
- “Hello World!”团队第五周第五次会议
博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.checkout&push代码 一.会议时间 2017年11月14日 ...
- C++中使用内存映射文件处理大文件
引言 文件操作是应用程序最为基本的功能之一,Win32 API和MFC均提供有支持文件处理的函数和类,常用的有Win32 API的CreateFile().WriteFile().ReadFile() ...
- CentOS7实现RabbitMQ高可用集群
CentOS安装RabbitMQ集群 1.有3台已安装RabbitMQ的机器 192.168.38.133 rabbitmq1 192.168.38.137 rabbitmq2 192.168.38. ...