Light oj 1379 -- 最短路
In Dhaka there are too many vehicles. So, the result is well known, yes, traffic jam. So, mostly people have to spend quite a time in the roads to go from one place to another.
Now, the students have finally found a solution to this problem. The idea is to make all the roads one way. That means a vehicle can go through the roads in one way only. And to make the number of vehicles low, each vehicle has to pay a toll to use a road. Now you want to go from a place s to another place t. And you have a total of p taka in your pocket. Now you want to find the path which contains the highest toll road, to go from s to t. Remember that you can't use more than p taka.
For the given picture, s = 1, t = 5 and p = 10. There are three paths from 1 to 5.
- Path 1: 1 - 2 - 5, total toll = 11 (> p)
- Path 2: 1 - 3 - 5, total toll = 9 (≤ p), 6 is the maximum toll
- Path 3: 1 - 4 - 5, total toll = 9 (≤ p), 5 is the maximum toll
So the maximum toll for a road of all of the paths having total toll not greater than p is 6.
Input
Input starts with an integer T (≤ 10), denoting the number of test cases.
Each case starts with five integers N (2 ≤ N ≤ 10000), M (1 ≤ M ≤ 50000), s (1 ≤ s ≤ N), t (1 ≤ t ≤ N) and p (1 ≤ p ≤ 106) where N means the number of junctions and M means the number of roads connecting the junctions. Then there will be M lines each containing three integers u v c. u and v are junctions and there is a road from u to v (1 ≤ u, v ≤ N, u ≠ v) and c (0 ≤ c ≤ 105) is the toll needed for that road. There can be multiple roads between two junctions.
Output
For each case, print the case number and the desired result. If no such result is found, print"-1".
Sample Input
2
5 6 1 5 10
1 2 7
2 5 4
1 3 6
3 5 3
1 4 5
4 5 4
2 1 1 2 10
1 2 20
Sample Output
Case 1: 6
Case 2: -1
取反向边跑两次dij,枚举所有边找到最优解。
#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define LL long long
int first1[],first2[];
struct Edge
{
int u,v,w,next;
}e1[],e2[];
struct node
{
int u,w;
bool operator<(const node&chs)const{
return w>chs.w;
}
};
int tot1,tot2;
void add1(int u,int v,int w)
{
e1[tot1].u=u;
e1[tot1].v=v;
e1[tot1].w=w;
e1[tot1].next=first1[u];
first1[u]=tot1++;
}
void add2(int u,int v,int w)
{
e2[tot2].u=u;
e2[tot2].v=v;
e2[tot2].w=w;
e2[tot2].next=first2[u];
first2[u]=tot2++;
}
int d1[],d2[];
bool vis[];
void dij(int s,int d[],Edge e[],int first[])
{
priority_queue<node>q;
memset(d,inf,sizeof(int)*);
memset(vis,,sizeof(bool)*);
q.push(node{s,});
d[s]=;
while(!q.empty()){
int u=q.top().u;
q.pop();
if(vis[u]) continue;
vis[u]=;
for(int i=first[u];i+;i=e[i].next){
if(d[u]+e[i].w<d[e[i].v]){
d[e[i].v]=d[u]+e[i].w;
q.push(node{e[i].v,d[e[i].v]});
}
}
} }
int main()
{
int T,N,M,s,t,p;
int u,v,w;
int i,j,k;
int cas=;
cin>>T;
while(T--){cas++;
tot1=tot2=;
memset(first1,-,sizeof(first1));
memset(first2,-,sizeof(first2));
cin>>N>>M>>s>>t>>p;
while(M--){
scanf("%d%d%d",&u,&v,&w);
add1(u,v,w);
add2(v,u,w);
}
dij(s,d1,e1,first1);
dij(t,d2,e2,first2);
int ans=-;
for(i=;i<=N;++i){
for(j=first1[i];j+;j=e1[j].next){
if(d1[e1[j].u]+d2[e1[j].v]+e1[j].w<=p){
ans=max(ans,e1[j].w);
}
}
}
cout<<"Case "<<cas<<": ";
cout<<ans<<endl;
}
return ;
}
Light oj 1379 -- 最短路的更多相关文章
- Light OJ 1316 A Wedding Party 最短路+状态压缩DP
题目来源:Light OJ 1316 1316 - A Wedding Party 题意:和HDU 4284 差点儿相同 有一些商店 从起点到终点在走过尽量多商店的情况下求最短路 思路:首先预处理每两 ...
- Light OJ 1114 Easily Readable 字典树
题目来源:Light OJ 1114 Easily Readable 题意:求一个句子有多少种组成方案 仅仅要满足每一个单词的首尾字符一样 中间顺序能够变化 思路:每一个单词除了首尾 中间的字符排序 ...
- Light OJ 1429 Assassin`s Creed (II) BFS+缩点+最小路径覆盖
题目来源:Light OJ 1429 Assassin`s Creed (II) 题意:最少几个人走全然图 能够反复走 有向图 思路:假设是DAG图而且每一个点不能反复走 那么就是裸的最小路径覆盖 如 ...
- Light OJ 1406 Assassin`s Creed 减少国家DP+支撑点甚至通缩+最小路径覆盖
标题来源:problem=1406">Light OJ 1406 Assassin`s Creed 意甲冠军:向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路: ...
- light oj 1007 Mathematically Hard (欧拉函数)
题目地址:light oj 1007 第一发欧拉函数. 欧拉函数重要性质: 设a为N的质因数.若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N ...
- Light OJ 1406 Assassin`s Creed 状态压缩DP+强连通缩点+最小路径覆盖
题目来源:Light OJ 1406 Assassin`s Creed 题意:有向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路:最少的的人能够走全然图 明显是最小路径覆盖问题 ...
- Light OJ 1288 Subsets Forming Perfect Squares 高斯消元求矩阵的秩
题目来源:Light OJ 1288 Subsets Forming Perfect Squares 题意:给你n个数 选出一些数 他们的乘积是全然平方数 求有多少种方案 思路:每一个数分解因子 每隔 ...
- Jan's light oj 01--二分搜索篇
碰到的一般题型:1.准确值二分查找,或者三分查找(类似二次函数的模型). 2.与计算几何相结合答案精度要求比较高的二分查找,有时与圆有关系时需要用到反三角函数利用 角度解题. 3.不好直接求解的一类计 ...
- Light OJ 1272 Maximum Subset Sum 高斯消元 最大XOR值
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011686226/article/details/32337735 题目来源:problem=12 ...
随机推荐
- idea操作数据库
1.View-->>Tool Windows-->>Database. 2.点击“+”号-->>选择Data Source-->>选择需要连接的数据库类 ...
- Linux 网络 I/O 模型简介(图文)
1.介绍 Linux 的内核将所有外部设备都看做一个文件来操作(一切皆文件),对一个文件的读写操作会调用内核提供的系统命令,返回一个file descriptor(fd,文件描述符).而对一个sock ...
- HBase1.2.6 预分区后,数据不进入预定分区的一个 bug
rowkey 如下: 19000015115042900001511504390000151150449000015115045900001511504690000151150479000015115 ...
- etcd:从应用场景到实现原理的全方位解读 转自infoq
转自 infoq etcd:从应用场景到实现原理的全方位解读 http://www.infoq.com/cn/articles/etcd-interpretation-application-scen ...
- Ubuntu16.04配置Android SDK环境
下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html(注意32位与64位,我 ...
- 【c++ primer, 5e】【函数基础】
p182~p185: 函数1.在调用函数和执行return语句的同时,也发生了控制权的转移. 2.函数返回值不能是一个数组.(但是可以返回一个包含数组的对象,或者指向数组的指针) 3.重要概念:名字的 ...
- FTP 两种工作模式
主动模式port FTP主动模式:TCP链接客户端访问FTP,客户端会开启一个大于1024的端口N访问FTP的21端口(控制端口),并通过21端口发送port命令与N+1的端口,服务端收到命令后会使用 ...
- 20145216史婧瑶《Java程序设计》第3周学习总结
20145216 <Java程序设计>第3周学习总结 教材学习内容总结 第四章 认识对象 4.1 类与对象 •对象(Object):存在的具体实体,具有明确的状态和行为 •类(Class) ...
- js事件委托篇(附js一般写法和js、jq事件委托写法)
参考: jQuery代码优化:事件委托篇 使用该技术能让你避免对特定的每个节点添加事件监听器:相反,事件监听器被添加在他们的父元素上,事件监听器会分析从子元素上冒泡上来的事件,并找到是哪个子元素事件. ...
- 如何使一个openwrt下的软件开机自启动
条件有三: 1.需要在软件包的Makefile中添加宏定义Package/$(package-name)/preinst和Package/$(package-name)/prerm define Pa ...