题解

发现似乎相当于问一个2000个元的方程组有没有解……

然而我懵逼啊……

发现当成图论,两个点之间连一条边,开始BFS,每个点的值赋成边权减另一个点的点权

如果一个环不合法那么肯定无解

代码

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
#include <queue>
//#define ivorysi
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define mo 974711
#define MAXN 2000005
#define eps 1e-3
#define RG register
#define calc(x) __builtin_popcount(x)
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
struct node {
int to,next,val;
}E[4005];
int head[2005],sumE,num[2005];
bool vis[2005];
int T,N,M,K;
void add(int u,int v,int c) {
E[++sumE].to = v;
E[sumE].next = head[u];
E[sumE].val = c;
head[u] = sumE;
}
void addtwo(int u,int v,int c) {
add(u,v,c);add(v,u,c);
}
queue<int> q;
bool BFS(int x) {
while(!q.empty()) q.pop();
q.push(x);
vis[x] = 1;
num[x] = 0;
while(!q.empty()) {
int u = q.front();q.pop();
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(!vis[v]) {
num[v] = E[i].val - num[u];
vis[v] = 1;
q.push(v);
}
else if(num[u] + num[v] != E[i].val) return false;
}
}
return true;
}
void Init() {
read(N);read(M);read(K);
memset(head,0,sizeof(head));sumE = 0;
memset(vis,0,sizeof(vis));
int x,y,c;
for(int i = 1 ; i <= K ; ++i) {
read(x);read(y);read(c);
addtwo(x,y + N,c);
}
}
void Solve() {
read(T);
while(T--) {
Init();
bool ans = 1;
for(int i = 1 ; i <= N + M ; ++i) {
if(!ans) break;
if(!vis[i]) ans &= BFS(i);
}
if(ans) puts("Yes");
else puts("No");
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}

【LOJ】 #2520. 「FJOI2018」所罗门王的宝藏的更多相关文章

  1. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  2. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  3. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  4. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  5. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  6. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  7. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

  8. Loj #3055. 「HNOI2019」JOJO

    Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...

  9. Loj 3058. 「HNOI2019」白兔之舞

    Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...

随机推荐

  1. ios 逆向

    Theos https://www.jianshu.com/p/307243ea40e4 Dumpsdecrypted https://www.cnblogs.com/wangyaoguo/p/908 ...

  2. json&pickle序列化

    一.用途 我们需要将内存中的数据进行序列化,即写入文件中时,写入的类型只能是字符串或者二进制类型.但是如果我们想要将复杂一些的数据类型,如:列表.字典或者函数之类的同样进行序列化,我们就要用到 jso ...

  3. HBuilder mui登录和访问控制教程--转载

    HBuilder mui登录和访问控制教程 mui中提供了登录的模板页,但是对于登录后各个页面的访问控制,刷新等并没有官方的推荐方案.我在这里简单说一种初级的解决方案吧,肯定有不足指出,欢迎批评指正. ...

  4. Linux下打包压缩war和解压war包 zip和jar

    ============jar================= 把当前目录下的所有文件打包成game.warjar -cvfM0 game.war ./ -c   创建war包-v   显示过程信息 ...

  5. Css Sprite 图片等比缩放图片大小

    图片大小80*40,即每张图片大小40*40,如何以20*20显示图片?1. 首先看下如何以40*40显示第二张图片: 正常显示css代码 .sprite { background-image: ur ...

  6. PhotoSwipe 图片浏览插件使用方法

    一.简介 PhotoSwipe 是专为移动触摸设备设计的相册/画廊.兼容所有iPhone.iPad.黑莓6+,以及桌面浏览器.底层实现基于HTML/CSS/JavaScript,是一款免费开源的相册产 ...

  7. 【BZOJ】1706: [usaco2007 Nov]relays 奶牛接力跑

    [题意]给定m条边的无向图,起点s,终点t,要求找出s到t恰好经过n条边的最短路径.n<=10^6,m<=100. [算法]floyd+矩阵快速幂 [题解] 先对点离散化,得到点数N. 对 ...

  8. 【BZOJ】1426: 收集邮票 期望DP

    [题意]有n种不同的邮票,第i次可以花i元等概率购买到一种邮票,求集齐n种邮票的期望代价.n<=10^4. [算法]期望DP [题解]首先设g[i]表示已拥有i张邮票集齐的期望购买次数,根据全期 ...

  9. css_input[checked]复选框去掉默认样式并添加新样式

    效果对比: “\2713”实体符号√ :如有兴趣查看详细实体符号请点这里 代码实现: <!DOCTYPE html> <html> <head> <meta ...

  10. 【Tomcat】tomcat设置http文件下载,配置文件下载目录

    tomcat作为http的下载服务器,网上有很多办法 但我认为最简单的是:(亲测有效) 1.直接把文件放在 /var/lib/tomcat6/webapps/ROOT 目录下, 2.然后在网址中访问: ...