请根据 models/blob/master/research/object_detection/g3doc/ 目录下的 installation.md 配置好你的环境

环境搭建可参考:基于win10,GPU的Tensorflow Object Detection API部署及USB摄像头目标检测

1. 测试opencv调用usb,c++和python两个版本

在Ubuntu16.04安装OpenCV3.1并实现USB摄像头图像采集

import cv2
cv2.namedWindow('testcamera', cv2.WINDOW_NORMAL) capture = cv2.VideoCapture(0)
print (capture.isOpened())
num = 0 while 1:
ret, img = capture.read()
cv2.imshow('testcamera', img)
key = cv2.waitKey(1)
num += 1
if key==1048603:#<ESC>
break capture.release()
cv2.destroyAllWindows()
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
using namespace cv; int main(int argc, char** argv) {
cvNamedWindow("视频"); CvCapture* capture = cvCreateCameraCapture(-);
IplImage* frame; while() {
frame = cvQueryFrame(capture);
if(!frame) break;
cvShowImage("视频", frame); char c = cvWaitKey();
if(c==) break;
} cvReleaseCapture(&capture);
cvDestroyWindow("视频");
return ;
}

2. GPU的Tensorflow Object Detection API部署及USB摄像头目标检测

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import cv2
import time from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image # This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..") from utils import label_map_util
from utils import visualization_utils as vis_util # What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
#MODEL_NAME = 'faster_rcnn_resnet101_coco_11_06_2017'
#MODEL_NAME = 'ssd_inception_v2_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz' # Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('/home/dsp/ranjiewen/tensorflow_models/models/research/object_detection/data', 'mscoco_label_map.pbtxt') #extract the ssd_mobilenet
start = time.clock()
NUM_CLASSES = 90
opener = urllib.request.URLopener()
#opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
end= time.clock()
print ('load the model',(end-start)) detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='') label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories) cap = cv2.VideoCapture(0)
print (cap.isOpened())
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
writer = tf.summary.FileWriter("logs/", sess.graph)
sess.run(tf.global_variables_initializer()) while(1): print("-------")
ret, frame = cap.read()
start = time.clock()
if cv2.waitKey(1) & 0xFF == ord('q'):
break
image_np=frame
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=6)
end = time.clock()
print ('frame fps:',1.0/(end - start))
#print 'frame:',time.time() - start
cv2.imshow("capture", image_np)
cv2.waitKey(1)
cap.release()
cv2.destroyAllWindows()

- 速度感觉还可以 。。。

TensorFlow目标检测(object_detection)api使用的更多相关文章

  1. tensorflow目标检测API之训练自己的数据集

    1.训练文件的配置 将生成的csv和record文件都放在新建的mydata文件夹下,并打开object_detection文件夹下的data文件夹,复制一个后缀为.pbtxt的文件到mtdata文件 ...

  2. tensorflow目标检测API之建立自己的数据集

    1 收集数据 为了方便,我找了11张月儿的照片做数据集,如图1,当然这在实际应用过程中是远远不够的 2 labelImg软件的安装 使用labelImg软件(下载地址:https://github.c ...

  3. tensorflow目标检测API安装及测试

    1.环境安装配置 1.1 安装tensorflow 安装tensorflow不再仔细说明,但是版本一定要是1.9 1.2 下载Tensorflow object detection API  下载地址 ...

  4. 实战小项目之基于yolo的目标检测web api实现

    上个月,对微服务及web service有了一些想法,看了一本app后台开发及运维的书,主要是一些概念性的东西,对service有了一些基本了解.互联网最开始的构架多是cs构架,浏览器兴起以后,变成了 ...

  5. tensorflow2.4与目标检测API在3060显卡上的配置安装

    目前,由于3060显卡驱动版本默认>11.0,因此,其不能使用tensorflow1版本的任何接口,所以学习在tf2版本下的目标检测驱动是很有必要的,此配置过程同样适用于任何30系显卡配置tf2 ...

  6. (转)如何用TensorLayer做目标检测的数据增强

    数据增强在机器学习中的作用不言而喻.和图片分类的数据增强不同,训练目标检测模型的数据增强在对图像做处理时,还需要对图片中每个目标的坐标做相应的处理.此外,位移.裁剪等操作还有可能使得一些目标在处理后只 ...

  7. Tensorflow Object_Detection 目标检测 笔记

    Tensorflow models Code:https://github.com/tensorflow/models 编写时间:2017.7 记录在使用Object_Detection 中遇到的问题 ...

  8. 目标检测 - Tensorflow Object Detection API

    一. 找到最好的工具 "工欲善其事,必先利其器",如果你想找一个深度学习框架来解决深度学习问题,TensorFlow 就是你的不二之选,究其原因,也不必过多解释,看过其优雅的代码架 ...

  9. tensorflow利用预训练模型进行目标检测(一):安装tensorflow detection api

    一.tensorflow安装 首先系统中已经安装了两个版本的tensorflow,一个是通过keras安装的, 一个是按照官网教程https://www.tensorflow.org/install/ ...

随机推荐

  1. vscode 解决vue emmet不起作用

    现在 vscode 自带的提示已经很好用了,大部分时间自带的提示展示的 emmet 内容已经是所需的了 在首选项 设置中配置 v1.15.1 之后需要这样设置: "emmet.trigger ...

  2. SQL必知必会 -------- order by、where等

    一.排序检索数据 1.排序数据:SELECT prod_name FROM Products ORDER BY prod_name(对prod_name列以字母顺序排序数据) ORDER BY子句的位 ...

  3. 【转】LoadRunner常见问题整理

    原文出自:http://blog.csdn.net/loadrunn/article/details/7886918 1.LR 脚本为空的解决方法: 1.去掉ie设置中的第三方支持取消掉 2.在系统属 ...

  4. export导出.xls时,在火狐的情况下出现表名乱码的情况的解决方案

    response.setContentType("application/octet-stream; charset=utf-8");fileName = exportDataDt ...

  5. wc 统计行数 字数

    Linux统计文件行数 2011-07-17 17:32 by 依水间, 168255 阅读, 4 评论, 收藏, 编辑 语法:wc [选项] 文件… 说明:该命令统计给定文件中的字节数.字数.行数. ...

  6. 创建操作表(UIActionSheet)

    UIActionSheet用来创建一个操作表,它的初始化代码如下: - (IBAction)testActionSheet:(id)sender { UIActionSheet *actionShee ...

  7. RxSwift 系列(七)

    前言 本篇文章将要学习RxSwift中连接操作符.Connectable Observable在订阅时不发射事件消息,而是仅当调用它们的connect()方法时才发射消息,这样就可以等待所有我们想要的 ...

  8. Django错误大汇总

    1.安装django报错解决方案 找到第一条报错信息: File "c:\users\chenwei\envs\testvir2\lib\site-packages\pip\basecomm ...

  9. django配置templates、static、media和连接mysql数据库

    1.模板文件 # =======templates配置======= if os.path.exists(os.path.join(BASE_DIR, 'templates')) is False: ...

  10. 【BZOJ 2440】 2440: [中山市选2011]完全平方数 (二分+容斥原理+莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数 ...