JobControl 的实现原理
本文地址:http://www.cnblogs.com/archimedes/p/hadoop-jobcontrol.html,转载请注明源地址。
引入实例:贝叶斯分类
贝叶斯分类是一种利用概率统计知识进行分类的统计学分类方法。该方法包括两个步骤:训练样本和分类。
其实现由多个MapReduce 作业完成,如图所示。其中,训练样本可由三个 MapReduce 作业实现:
第一个作业(ExtractJob)抽取文档特征,该作业只需要 Map 即可完成 ;
第二个作业(ClassPriorJob)计算类别的先验概率,即统计每个类别中文档的数目,并计算类别概率;
第三个作业(ConditionalProbilityJob)计算单词的条件概率,即统计<label, word> 在所有文档中出现的次数并计算单词的条件概率。
后两个作业的具体实现类似于WordCount。分类过程由一个作业(PredictJob)完成。该作业的 map()函数计算每个待分类文档属于每个类别的概率,reduce() 函数找出每个文档概率最高的类别,并输出 <docid, label>( 编号为 docid 的文档属于类别 label)。
一个完整的贝叶斯分类算法可能需要 4 个有依赖关系的 MapReduce 作业完成,传统的做法是:为每个作业创建相应的 JobConf 对象,并按照依赖关系依次(串行)提交各个作业,如下所示:
// 为 4 个作业分别创建 JobConf 对象
JobConf extractJobConf = new JobConf(ExtractJob.class);
JobConf classPriorJobConf = new JobConf(ClassPriorJob.class);
JobConf conditionalProbilityJobConf = new JobConf(ConditionalProbilityJob. class) ;
JobConf predictJobConf = new JobConf(PredictJob.class);
...// 配置各个 JobConf
// 按照依赖关系依次提交作业
JobClient.runJob(extractJobConf);
JobClient.runJob(classPriorJobConf);
JobClient.runJob(conditionalProbilityJobConf);
JobClient.runJob(predictJobConf);
如果使用 JobControl,则用户只需使用 addDepending() 函数添加作业依赖关系接口,JobControl 会按照依赖关系调度各个作业,具体代码如下:
Configuration extractJobConf = new Configuration();
Configuration classPriorJobConf = new Configuration();
Configuration conditionalProbilityJobConf = new Configuration();
Configuration predictJobConf = new Configuration();
...// 设置各个Configuration
// 创建Job对象。注意,JobControl要求作业必须封装成Job对象
Job extractJob = new Job(extractJobConf);
Job classPriorJob = new Job(classPriorJobConf);
Job conditionalProbilityJob = new Job(conditionalProbilityJobConf);
Job predictJob = new Job(predictJobConf);
//设置依赖关系,构造一个DAG作业
classPriorJob.addDepending(extractJob);
conditionalProbilityJob.addDepending(extractJob);
predictJob.addDepending(classPriorJob);
predictJob.addDepending(conditionalProbilityJob);
//创建JobControl对象,由它对作业进行监控和调度
JobControl JC = new JobControl("Native Bayes");
JC.addJob(extractJob);//把4个作业加入JobControl中
JC.addJob(classPriorJob);
JC.addJob(conditionalProbilityJob);
JC.addJob(predictJob);
JC.run(); //提交DAG作业
在实际运行过程中,不依赖于其他任何作业的 extractJob 会优先得到调度,一旦运行完成,classPriorJob 和 conditionalProbilityJob 两个作业同时被调度,待它们全部运行完成后,predictJob 被调度。对比以上两种方案,可以得到一个简单的结论:使用 JobControl 编写 DAG 作业更加简便,且能使多个无依赖关系的作业并行运行。
JobControl 设计原理分析
JobControl 由两个类组成:Job 和 JobControl。其中,Job 类封装了一个 MapReduce 作业及其对应的依赖关系,主要负责监控各个依赖作业的运行状态,以此更新自己的状态,其状态转移图如图所示。作业刚开始处于 WAITING 状态。如果没有依赖作业或者所有依赖作业均已运行完成,则进入READY 状态。一旦进入 READY 状态,则作业可被提交到 Hadoop 集群上运行,并进入 RUNNING 状态。在 RUNNING 状态下,根据作业运行情况,可能进入 SUCCESS 或者 FAILED 状态。需要注意的是,如果一个作业的依赖作业失败,则该作业也会失败,于是形成“多米诺骨牌效应”, 后续所有作业均会失败。
JobControl 封装了一系列 MapReduce 作业及其对应的依赖关系。 它将处于不同状态的作业放入不同的哈希表中,并按照图所示的状态转移作业,直到所有作业运行完成。在实现的时候,JobControl 包含一个线程用于周期性地监控和更新各个作业的运行状态,调度依赖作业运行完成的作业,提交处于 READY 状态的作业等。同时,它还提供了一些API 用于挂起、恢复和暂停该线程。
Job类深入剖析
在Job类的起始部分,定义了一些数据域,包括job所处的状态,以及其他相关的信息,具体代码如下:
import java.util.ArrayList;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.JobID;
import org.apache.hadoop.mapred.jobcontrol.Job; // 一个 job 将处于如下的一种状态
final public static int SUCCESS = 0; //成功
final public static int WAITING = 1; //警告
final public static int RUNNING = 2; //运行
final public static int READY = 3; //准备
final public static int FAILED = 4; //失败
final public static int DEPENDENT_FAILED = 5; //依赖的作业失败 private JobConf theJobConf;
private int state;
private String jobID; // 通过JobControl class分配和使用
private JobID mapredJobID; // 通过map/reduce分配的job ID
private String jobName; // 外部名字, 通过client app分配/使用
private String message; // 一些有用的信息例如用户消耗,
// e.g. job失败的原因
private ArrayList<Job> dependingJobs; // 当前job所依赖的jobs列表
private JobClient jc = null; // map reduce job client
接着定义了两个构造函数:
/**
* Construct a job.
* @param jobConf a mapred job configuration representing a job to be executed.
* @param dependingJobs an array of jobs the current job depends on
*/
public Job(JobConf jobConf, ArrayList<Job> dependingJobs) throws IOException {
this.theJobConf = jobConf;
this.dependingJobs = dependingJobs;
this.state = Job.WAITING;
this.jobID = "unassigned";
this.mapredJobID = null; //not yet assigned
this.jobName = "unassigned";
this.message = "just initialized";
this.jc = new JobClient(jobConf);
} /**
* Construct a job.
*
* @param jobConf mapred job configuration representing a job to be executed.
* @throws IOException
*/
public Job(JobConf jobConf) throws IOException {
this(jobConf, null);
}
接着重写了String类中的toString方法,代码如下:
@Override
public String toString() {
StringBuffer sb = new StringBuffer();
sb.append("job name:\t").append(this.jobName).append("\n");
sb.append("job id:\t").append(this.jobID).append("\n");
sb.append("job state:\t").append(this.state).append("\n");
sb.append("job mapred id:\t").append(this.mapredJobID==null ? "unassigned"
: this.mapredJobID).append("\n");
sb.append("job message:\t").append(this.message).append("\n"); if (this.dependingJobs == null || this.dependingJobs.size() == 0) {
sb.append("job has no depending job:\t").append("\n");
} else {
sb.append("job has ").append(this.dependingJobs.size()).append(" dependeng jobs:\n");
for (int i = 0; i < this.dependingJobs.size(); i++) {
sb.append("\t depending job ").append(i).append(":\t");
sb.append((this.dependingJobs.get(i)).getJobName()).append("\n");
}
}
return sb.toString();
}
toString
接下来是一长串的get/set获取设置属性的代码:
/**
* @return the job name of this job
*/
public String getJobName() {
return this.jobName;
} /**
* Set the job name for this job.
* @param jobName the job name
*/
public void setJobName(String jobName) {
this.jobName = jobName;
} /**
* @return the job ID of this job assigned by JobControl
*/
public String getJobID() {
return this.jobID;
} /**
* Set the job ID for this job.
* @param id the job ID
*/
public void setJobID(String id) {
this.jobID = id;
} /**
* @return the mapred ID of this job
* @deprecated use {@link #getAssignedJobID()} instead
*/
@Deprecated
public String getMapredJobID() {
return this.mapredJobID.toString();
} /**
* Set the mapred ID for this job.
* @param mapredJobID the mapred job ID for this job.
* @deprecated use {@link #setAssignedJobID(JobID)} instead
*/
@Deprecated
public void setMapredJobID(String mapredJobID) {
this.mapredJobID = JobID.forName(mapredJobID);
} /**
* @return the mapred ID of this job as assigned by the
* mapred framework.
*/
public JobID getAssignedJobID() {
return this.mapredJobID;
} /**
* Set the mapred ID for this job as assigned by the
* mapred framework.
* @param mapredJobID the mapred job ID for this job.
*/
public void setAssignedJobID(JobID mapredJobID) {
this.mapredJobID = mapredJobID;
} /**
* @return the mapred job conf of this job
*/
public JobConf getJobConf() {
return this.theJobConf;
} /**
* Set the mapred job conf for this job.
* @param jobConf the mapred job conf for this job.
*/
public void setJobConf(JobConf jobConf) {
this.theJobConf = jobConf;
} /**
* @return the state of this job
*/
public synchronized int getState() {
return this.state;
} /**
* Set the state for this job.
* @param state the new state for this job.
*/
protected synchronized void setState(int state) {
this.state = state;
} /**
* @return the message of this job
*/
public String getMessage() {
return this.message;
} /**
* Set the message for this job.
* @param message the message for this job.
*/
public void setMessage(String message) {
this.message = message;
} /**
* @return the job client of this job
*/
public JobClient getJobClient(){
return this.jc;
} /**
* @return the depending jobs of this job
*/
public ArrayList<Job> getDependingJobs() {
return this.dependingJobs;
}
get/set
当Job处于writing状态下的时候,可以向依赖列表中添加所依赖的Job:
/**
* Add a job to this jobs' dependency list. Dependent jobs can only be added while a Job
* is waiting to run, not during or afterwards.
*
* @param dependingJob Job that this Job depends on.
* @return <tt>true</tt> if the Job was added.
*/
public synchronized boolean addDependingJob(Job dependingJob) {
if (this.state == Job.WAITING) { //only allowed to add jobs when waiting
if (this.dependingJobs == null) {
this.dependingJobs = new ArrayList<Job>();
}
return this.dependingJobs.add(dependingJob);
} else {
return false;
}
}
还提供了是否处于完成状态和是否处于准备状态的判断方法:
/**
* @return true if this job is in a complete state
*/
public boolean isCompleted() {
return this.state == Job.FAILED ||
this.state == Job.DEPENDENT_FAILED ||
this.state == Job.SUCCESS;
} /**
* @return true if this job is in READY state
*/
public boolean isReady() {
return this.state == Job.READY;
}
提供了检查正在运行的Job的状态,如果完成,判断是成功还是失败,代码如下:
/**
* Check the state of this running job. The state may
* remain the same, become SUCCESS or FAILED.
*/
private void checkRunningState() {
RunningJob running = null;
try {
running = jc.getJob(this.mapredJobID);
if (running.isComplete()) {
if (running.isSuccessful()) {
this.state = Job.SUCCESS;
} else {
this.state = Job.FAILED;
this.message = "Job failed!";
try {
running.killJob();
} catch (IOException e1) { }
try {
this.jc.close();
} catch (IOException e2) { }
}
} } catch (IOException ioe) {
this.state = Job.FAILED;
this.message = StringUtils.stringifyException(ioe);
try {
if (running != null)
running.killJob();
} catch (IOException e1) { }
try {
this.jc.close();
} catch (IOException e1) { }
}
}
实现了检查并更新Job的状态的checkState()方法:
/**
* Check and update the state of this job. The state changes
* depending on its current state and the states of the depending jobs.
*/
synchronized int checkState() {
if (this.state == Job.RUNNING) {
checkRunningState();
}
if (this.state != Job.WAITING) {
return this.state;
}
if (this.dependingJobs == null || this.dependingJobs.size() == 0) {
this.state = Job.READY;
return this.state;
}
Job pred = null;
int n = this.dependingJobs.size();
for (int i = 0; i < n; i++) {
pred = this.dependingJobs.get(i);
int s = pred.checkState();
if (s == Job.WAITING || s == Job.READY || s == Job.RUNNING) {
break; // a pred is still not completed, continue in WAITING
// state
}
if (s == Job.FAILED || s == Job.DEPENDENT_FAILED) {
this.state = Job.DEPENDENT_FAILED;
this.message = "depending job " + i + " with jobID "
+ pred.getJobID() + " failed. " + pred.getMessage();
break;
}
// pred must be in success state
if (i == n - 1) {
this.state = Job.READY;
}
}
return this.state;
}
最后包含提交Job的方法submit(),代码如下:
/**
* Submit this job to mapred. The state becomes RUNNING if submission
* is successful, FAILED otherwise.
*/
protected synchronized void submit() {
try {
if (theJobConf.getBoolean("create.empty.dir.if.nonexist", false)) {
FileSystem fs = FileSystem.get(theJobConf);
Path inputPaths[] = FileInputFormat.getInputPaths(theJobConf);
for (int i = 0; i < inputPaths.length; i++) {
if (!fs.exists(inputPaths[i])) {
try {
fs.mkdirs(inputPaths[i]);
} catch (IOException e) { }
}
}
}
RunningJob running = jc.submitJob(theJobConf);
this.mapredJobID = running.getID();
this.state = Job.RUNNING;
} catch (IOException ioe) {
this.state = Job.FAILED;
this.message = StringUtils.stringifyException(ioe);
}
} }
完整的Job类源代码如下:
package org.apache.hadoop.mapred.jobcontrol; import java.io.IOException;
import java.util.ArrayList; import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.JobID;
import org.apache.hadoop.mapred.RunningJob;
import org.apache.hadoop.util.StringUtils; /** This class encapsulates a MapReduce job and its dependency. It monitors
* the states of the depending jobs and updates the state of this job.
* A job starts in the WAITING state. If it does not have any depending jobs, or
* all of the depending jobs are in SUCCESS state, then the job state will become
* READY. If any depending jobs fail, the job will fail too.
* When in READY state, the job can be submitted to Hadoop for execution, with
* the state changing into RUNNING state. From RUNNING state, the job can get into
* SUCCESS or FAILED state, depending the status of the job execution.
*
*/ public class Job { // A job will be in one of the following states
final public static int SUCCESS = 0;
final public static int WAITING = 1;
final public static int RUNNING = 2;
final public static int READY = 3;
final public static int FAILED = 4;
final public static int DEPENDENT_FAILED = 5; private JobConf theJobConf;
private int state;
private String jobID; // assigned and used by JobControl class
private JobID mapredJobID; // the job ID assigned by map/reduce
private String jobName; // external name, assigned/used by client app
private String message; // some info for human consumption,
// e.g. the reason why the job failed
private ArrayList<Job> dependingJobs; // the jobs the current job depends on private JobClient jc = null; // the map reduce job client /**
* Construct a job.
* @param jobConf a mapred job configuration representing a job to be executed.
* @param dependingJobs an array of jobs the current job depends on
*/
public Job(JobConf jobConf, ArrayList<Job> dependingJobs) throws IOException {
this.theJobConf = jobConf;
this.dependingJobs = dependingJobs;
this.state = Job.WAITING;
this.jobID = "unassigned";
this.mapredJobID = null; //not yet assigned
this.jobName = "unassigned";
this.message = "just initialized";
this.jc = new JobClient(jobConf);
} /**
* Construct a job.
*
* @param jobConf mapred job configuration representing a job to be executed.
* @throws IOException
*/
public Job(JobConf jobConf) throws IOException {
this(jobConf, null);
} @Override
public String toString() {
StringBuffer sb = new StringBuffer();
sb.append("job name:\t").append(this.jobName).append("\n");
sb.append("job id:\t").append(this.jobID).append("\n");
sb.append("job state:\t").append(this.state).append("\n");
sb.append("job mapred id:\t").append(this.mapredJobID==null ? "unassigned"
: this.mapredJobID).append("\n");
sb.append("job message:\t").append(this.message).append("\n"); if (this.dependingJobs == null || this.dependingJobs.size() == 0) {
sb.append("job has no depending job:\t").append("\n");
} else {
sb.append("job has ").append(this.dependingJobs.size()).append(" dependeng jobs:\n");
for (int i = 0; i < this.dependingJobs.size(); i++) {
sb.append("\t depending job ").append(i).append(":\t");
sb.append((this.dependingJobs.get(i)).getJobName()).append("\n");
}
}
return sb.toString();
} /**
* @return the job name of this job
*/
public String getJobName() {
return this.jobName;
} /**
* Set the job name for this job.
* @param jobName the job name
*/
public void setJobName(String jobName) {
this.jobName = jobName;
} /**
* @return the job ID of this job assigned by JobControl
*/
public String getJobID() {
return this.jobID;
} /**
* Set the job ID for this job.
* @param id the job ID
*/
public void setJobID(String id) {
this.jobID = id;
} /**
* @return the mapred ID of this job
* @deprecated use {@link #getAssignedJobID()} instead
*/
@Deprecated
public String getMapredJobID() {
return this.mapredJobID.toString();
} /**
* Set the mapred ID for this job.
* @param mapredJobID the mapred job ID for this job.
* @deprecated use {@link #setAssignedJobID(JobID)} instead
*/
@Deprecated
public void setMapredJobID(String mapredJobID) {
this.mapredJobID = JobID.forName(mapredJobID);
} /**
* @return the mapred ID of this job as assigned by the
* mapred framework.
*/
public JobID getAssignedJobID() {
return this.mapredJobID;
} /**
* Set the mapred ID for this job as assigned by the
* mapred framework.
* @param mapredJobID the mapred job ID for this job.
*/
public void setAssignedJobID(JobID mapredJobID) {
this.mapredJobID = mapredJobID;
} /**
* @return the mapred job conf of this job
*/
public JobConf getJobConf() {
return this.theJobConf;
} /**
* Set the mapred job conf for this job.
* @param jobConf the mapred job conf for this job.
*/
public void setJobConf(JobConf jobConf) {
this.theJobConf = jobConf;
} /**
* @return the state of this job
*/
public synchronized int getState() {
return this.state;
} /**
* Set the state for this job.
* @param state the new state for this job.
*/
protected synchronized void setState(int state) {
this.state = state;
} /**
* @return the message of this job
*/
public String getMessage() {
return this.message;
} /**
* Set the message for this job.
* @param message the message for this job.
*/
public void setMessage(String message) {
this.message = message;
} /**
* @return the job client of this job
*/
public JobClient getJobClient(){
return this.jc;
} /**
* @return the depending jobs of this job
*/
public ArrayList<Job> getDependingJobs() {
return this.dependingJobs;
} /**
* Add a job to this jobs' dependency list. Dependent jobs can only be added while a Job
* is waiting to run, not during or afterwards.
*
* @param dependingJob Job that this Job depends on.
* @return <tt>true</tt> if the Job was added.
*/
public synchronized boolean addDependingJob(Job dependingJob) {
if (this.state == Job.WAITING) { //only allowed to add jobs when waiting
if (this.dependingJobs == null) {
this.dependingJobs = new ArrayList<Job>();
}
return this.dependingJobs.add(dependingJob);
} else {
return false;
}
} /**
* @return true if this job is in a complete state
*/
public boolean isCompleted() {
return this.state == Job.FAILED ||
this.state == Job.DEPENDENT_FAILED ||
this.state == Job.SUCCESS;
} /**
* @return true if this job is in READY state
*/
public boolean isReady() {
return this.state == Job.READY;
} /**
* Check the state of this running job. The state may
* remain the same, become SUCCESS or FAILED.
*/
private void checkRunningState() {
RunningJob running = null;
try {
running = jc.getJob(this.mapredJobID);
if (running.isComplete()) {
if (running.isSuccessful()) {
this.state = Job.SUCCESS;
} else {
this.state = Job.FAILED;
this.message = "Job failed!";
try {
running.killJob();
} catch (IOException e1) { }
try {
this.jc.close();
} catch (IOException e2) { }
}
} } catch (IOException ioe) {
this.state = Job.FAILED;
this.message = StringUtils.stringifyException(ioe);
try {
if (running != null)
running.killJob();
} catch (IOException e1) { }
try {
this.jc.close();
} catch (IOException e1) { }
}
} /**
* Check and update the state of this job. The state changes
* depending on its current state and the states of the depending jobs.
*/
synchronized int checkState() {
if (this.state == Job.RUNNING) {
checkRunningState();
}
if (this.state != Job.WAITING) {
return this.state;
}
if (this.dependingJobs == null || this.dependingJobs.size() == 0) {
this.state = Job.READY;
return this.state;
}
Job pred = null;
int n = this.dependingJobs.size();
for (int i = 0; i < n; i++) {
pred = this.dependingJobs.get(i);
int s = pred.checkState();
if (s == Job.WAITING || s == Job.READY || s == Job.RUNNING) {
break; // a pred is still not completed, continue in WAITING
// state
}
if (s == Job.FAILED || s == Job.DEPENDENT_FAILED) {
this.state = Job.DEPENDENT_FAILED;
this.message = "depending job " + i + " with jobID "
+ pred.getJobID() + " failed. " + pred.getMessage();
break;
}
// pred must be in success state
if (i == n - 1) {
this.state = Job.READY;
}
} return this.state;
} /**
* Submit this job to mapred. The state becomes RUNNING if submission
* is successful, FAILED otherwise.
*/
protected synchronized void submit() {
try {
if (theJobConf.getBoolean("create.empty.dir.if.nonexist", false)) {
FileSystem fs = FileSystem.get(theJobConf);
Path inputPaths[] = FileInputFormat.getInputPaths(theJobConf);
for (int i = 0; i < inputPaths.length; i++) {
if (!fs.exists(inputPaths[i])) {
try {
fs.mkdirs(inputPaths[i]);
} catch (IOException e) { }
}
}
}
RunningJob running = jc.submitJob(theJobConf);
this.mapredJobID = running.getID();
this.state = Job.RUNNING;
} catch (IOException ioe) {
this.state = Job.FAILED;
this.message = StringUtils.stringifyException(ioe);
}
} }
Job
JobControl类深入剖析
在JobControl类的起始部分,定义了一些数据域,包括线程所处的状态,以及其他相关的信息,具体代码如下:
// The thread can be in one of the following state
private static final int RUNNING = 0;
private static final int SUSPENDED = 1;
private static final int STOPPED = 2;
private static final int STOPPING = 3;
private static final int READY = 4; private int runnerState; // the thread state private Map<String, Job> waitingJobs;
private Map<String, Job> readyJobs;
private Map<String, Job> runningJobs;
private Map<String, Job> successfulJobs;
private Map<String, Job> failedJobs; private long nextJobID;
private String groupName;
接下来是对应的构造函数:
/**
* Construct a job control for a group of jobs.
* @param groupName a name identifying this group
*/
public JobControl(String groupName) {
this.waitingJobs = new Hashtable<String, Job>();
this.readyJobs = new Hashtable<String, Job>();
this.runningJobs = new Hashtable<String, Job>();
this.successfulJobs = new Hashtable<String, Job>();
this.failedJobs = new Hashtable<String, Job>();
this.nextJobID = -1;
this.groupName = groupName;
this.runnerState = JobControl.READY;
}
接着是一个将Map的Jobs转换为ArrayList的转换方法(toArrayList),代码如下:
private static ArrayList<Job> toArrayList(Map<String, Job> jobs) {
ArrayList<Job> retv = new ArrayList<Job>();
synchronized (jobs) {
for (Job job : jobs.values()) {
retv.add(job);
}
}
return retv;
}
类中当然少不了一些get方法:
/**
* @return the jobs in the success state
*/
public ArrayList<Job> getSuccessfulJobs() {
return JobControl.toArrayList(this.successfulJobs);
}
public ArrayList<Job> getFailedJobs() {
return JobControl.toArrayList(this.failedJobs);
}
private String getNextJobID() {
nextJobID += 1;
return this.groupName + this.nextJobID;
}
类中还有将Job插入Job队列的方法:
private static void addToQueue(Job aJob, Map<String, Job> queue) {
synchronized(queue) {
queue.put(aJob.getJobID(), aJob);
}
} private void addToQueue(Job aJob) {
Map<String, Job> queue = getQueue(aJob.getState());
addToQueue(aJob, queue);
}
既然有插入队列,就有从Job队列根据Job运行状态而取出的方法,代码如下:
private Map<String, Job> getQueue(int state) {
Map<String, Job> retv = null;
if (state == Job.WAITING) {
retv = this.waitingJobs;
} else if (state == Job.READY) {
retv = this.readyJobs;
} else if (state == Job.RUNNING) {
retv = this.runningJobs;
} else if (state == Job.SUCCESS) {
retv = this.successfulJobs;
} else if (state == Job.FAILED || state == Job.DEPENDENT_FAILED) {
retv = this.failedJobs;
}
return retv;
}
添加一个新的Job的方法:
/**
* Add a new job.
* @param aJob the new job
*/
synchronized public String addJob(Job aJob) {
String id = this.getNextJobID();
aJob.setJobID(id);
aJob.setState(Job.WAITING);
this.addToQueue(aJob);
return id;
} /**
* Add a collection of jobs
*
* @param jobs
*/
public void addJobs(Collection<Job> jobs) {
for (Job job : jobs) {
addJob(job);
}
}
获取线程的状态,设置、停止线程的方法:
/**
* @return the thread state
*/
public int getState() {
return this.runnerState;
} /**
* set the thread state to STOPPING so that the
* thread will stop when it wakes up.
*/
public void stop() {
this.runnerState = JobControl.STOPPING;
} /**
* suspend the running thread
*/
public void suspend () {
if (this.runnerState == JobControl.RUNNING) {
this.runnerState = JobControl.SUSPENDED;
}
} /**
* resume the suspended thread
*/
public void resume () {
if (this.runnerState == JobControl.SUSPENDED) {
this.runnerState = JobControl.RUNNING;
}
}
检查运行、等待的Jobs,将符合条件的添加至相应的队列:
synchronized private void checkRunningJobs() {
Map<String, Job> oldJobs = null;
oldJobs = this.runningJobs;
this.runningJobs = new Hashtable<String, Job>(); for (Job nextJob : oldJobs.values()) {
int state = nextJob.checkState();
/*
if (state != Job.RUNNING) {
System.out.println("The state of the running job " +
nextJob.getJobName() + " has changed to: " + nextJob.getState());
}
*/
this.addToQueue(nextJob);
}
} synchronized private void checkWaitingJobs() {
Map<String, Job> oldJobs = null;
oldJobs = this.waitingJobs;
this.waitingJobs = new Hashtable<String, Job>(); for (Job nextJob : oldJobs.values()) {
int state = nextJob.checkState();
/*
if (state != Job.WAITING) {
System.out.println("The state of the waiting job " +
nextJob.getJobName() + " has changed to: " + nextJob.getState());
}
*/
this.addToQueue(nextJob);
}
} synchronized private void startReadyJobs() {
Map<String, Job> oldJobs = null;
oldJobs = this.readyJobs;
this.readyJobs = new Hashtable<String, Job>(); for (Job nextJob : oldJobs.values()) {
//System.out.println("Job to submit to Hadoop: " + nextJob.getJobName());
nextJob.submit();
//System.out.println("Hadoop ID: " + nextJob.getMapredJobID());
this.addToQueue(nextJob);
}
}
判断是否所有的JOb都结束的方法:
synchronized public boolean allFinished() {
return this.waitingJobs.size() == 0 &&
this.readyJobs.size() == 0 &&
this.runningJobs.size() == 0;
}
检查运行Jobs的状态、更新等待Job状态、在准备状态下提交的Run方法:
/**
* The main loop for the thread.
* The loop does the following:
* Check the states of the running jobs
* Update the states of waiting jobs
* Submit the jobs in ready state
*/
public void run() {
this.runnerState = JobControl.RUNNING;
while (true) {
while (this.runnerState == JobControl.SUSPENDED) {
try {
Thread.sleep(5000);
}
catch (Exception e) { }
}
checkRunningJobs();
checkWaitingJobs();
startReadyJobs();
if (this.runnerState != JobControl.RUNNING &&
this.runnerState != JobControl.SUSPENDED) {
break;
}
try {
Thread.sleep(5000);
}
catch (Exception e) { }
if (this.runnerState != JobControl.RUNNING &&
this.runnerState != JobControl.SUSPENDED) {
break;
}
}
this.runnerState = JobControl.STOPPED;
} }
完整的JobControl类:
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/ package org.apache.hadoop.mapred.jobcontrol; import java.util.ArrayList;
import java.util.Collection;
import java.util.Hashtable;
import java.util.Map; /** This class encapsulates a set of MapReduce jobs and its dependency. It tracks
* the states of the jobs by placing them into different tables according to their
* states.
*
* This class provides APIs for the client app to add a job to the group and to get
* the jobs in the group in different states. When a
* job is added, an ID unique to the group is assigned to the job.
*
* This class has a thread that submits jobs when they become ready, monitors the
* states of the running jobs, and updates the states of jobs based on the state changes
* of their depending jobs states. The class provides APIs for suspending/resuming
* the thread,and for stopping the thread.
*
*/
public class JobControl implements Runnable{ // The thread can be in one of the following state
private static final int RUNNING = 0;
private static final int SUSPENDED = 1;
private static final int STOPPED = 2;
private static final int STOPPING = 3;
private static final int READY = 4; private int runnerState; // the thread state private Map<String, Job> waitingJobs;
private Map<String, Job> readyJobs;
private Map<String, Job> runningJobs;
private Map<String, Job> successfulJobs;
private Map<String, Job> failedJobs; private long nextJobID;
private String groupName; /**
* Construct a job control for a group of jobs.
* @param groupName a name identifying this group
*/
public JobControl(String groupName) {
this.waitingJobs = new Hashtable<String, Job>();
this.readyJobs = new Hashtable<String, Job>();
this.runningJobs = new Hashtable<String, Job>();
this.successfulJobs = new Hashtable<String, Job>();
this.failedJobs = new Hashtable<String, Job>();
this.nextJobID = -1;
this.groupName = groupName;
this.runnerState = JobControl.READY;
} private static ArrayList<Job> toArrayList(Map<String, Job> jobs) {
ArrayList<Job> retv = new ArrayList<Job>();
synchronized (jobs) {
for (Job job : jobs.values()) {
retv.add(job);
}
}
return retv;
} /**
* @return the jobs in the waiting state
*/
public ArrayList<Job> getWaitingJobs() {
return JobControl.toArrayList(this.waitingJobs);
} /**
* @return the jobs in the running state
*/
public ArrayList<Job> getRunningJobs() {
return JobControl.toArrayList(this.runningJobs);
} /**
* @return the jobs in the ready state
*/
public ArrayList<Job> getReadyJobs() {
return JobControl.toArrayList(this.readyJobs);
} /**
* @return the jobs in the success state
*/
public ArrayList<Job> getSuccessfulJobs() {
return JobControl.toArrayList(this.successfulJobs);
} public ArrayList<Job> getFailedJobs() {
return JobControl.toArrayList(this.failedJobs);
} private String getNextJobID() {
nextJobID += 1;
return this.groupName + this.nextJobID;
} private static void addToQueue(Job aJob, Map<String, Job> queue) {
synchronized(queue) {
queue.put(aJob.getJobID(), aJob);
}
} private void addToQueue(Job aJob) {
Map<String, Job> queue = getQueue(aJob.getState());
addToQueue(aJob, queue);
} private Map<String, Job> getQueue(int state) {
Map<String, Job> retv = null;
if (state == Job.WAITING) {
retv = this.waitingJobs;
} else if (state == Job.READY) {
retv = this.readyJobs;
} else if (state == Job.RUNNING) {
retv = this.runningJobs;
} else if (state == Job.SUCCESS) {
retv = this.successfulJobs;
} else if (state == Job.FAILED || state == Job.DEPENDENT_FAILED) {
retv = this.failedJobs;
}
return retv;
} /**
* Add a new job.
* @param aJob the new job
*/
synchronized public String addJob(Job aJob) {
String id = this.getNextJobID();
aJob.setJobID(id);
aJob.setState(Job.WAITING);
this.addToQueue(aJob);
return id;
} /**
* Add a collection of jobs
*
* @param jobs
*/
public void addJobs(Collection<Job> jobs) {
for (Job job : jobs) {
addJob(job);
}
} /**
* @return the thread state
*/
public int getState() {
return this.runnerState;
} /**
* set the thread state to STOPPING so that the
* thread will stop when it wakes up.
*/
public void stop() {
this.runnerState = JobControl.STOPPING;
} /**
* suspend the running thread
*/
public void suspend () {
if (this.runnerState == JobControl.RUNNING) {
this.runnerState = JobControl.SUSPENDED;
}
} /**
* resume the suspended thread
*/
public void resume () {
if (this.runnerState == JobControl.SUSPENDED) {
this.runnerState = JobControl.RUNNING;
}
} synchronized private void checkRunningJobs() { Map<String, Job> oldJobs = null;
oldJobs = this.runningJobs;
this.runningJobs = new Hashtable<String, Job>(); for (Job nextJob : oldJobs.values()) {
int state = nextJob.checkState();
/*
if (state != Job.RUNNING) {
System.out.println("The state of the running job " +
nextJob.getJobName() + " has changed to: " + nextJob.getState());
}
*/
this.addToQueue(nextJob);
}
} synchronized private void checkWaitingJobs() {
Map<String, Job> oldJobs = null;
oldJobs = this.waitingJobs;
this.waitingJobs = new Hashtable<String, Job>(); for (Job nextJob : oldJobs.values()) {
int state = nextJob.checkState();
/*
if (state != Job.WAITING) {
System.out.println("The state of the waiting job " +
nextJob.getJobName() + " has changed to: " + nextJob.getState());
}
*/
this.addToQueue(nextJob);
}
} synchronized private void startReadyJobs() {
Map<String, Job> oldJobs = null;
oldJobs = this.readyJobs;
this.readyJobs = new Hashtable<String, Job>(); for (Job nextJob : oldJobs.values()) {
//System.out.println("Job to submit to Hadoop: " + nextJob.getJobName());
nextJob.submit();
//System.out.println("Hadoop ID: " + nextJob.getMapredJobID());
this.addToQueue(nextJob);
}
} synchronized public boolean allFinished() {
return this.waitingJobs.size() == 0 &&
this.readyJobs.size() == 0 &&
this.runningJobs.size() == 0;
} /**
* The main loop for the thread.
* The loop does the following:
* Check the states of the running jobs
* Update the states of waiting jobs
* Submit the jobs in ready state
*/
public void run() {
this.runnerState = JobControl.RUNNING;
while (true) {
while (this.runnerState == JobControl.SUSPENDED) {
try {
Thread.sleep(5000);
}
catch (Exception e) { }
}
checkRunningJobs();
checkWaitingJobs();
startReadyJobs();
if (this.runnerState != JobControl.RUNNING &&
this.runnerState != JobControl.SUSPENDED) {
break;
}
try {
Thread.sleep(5000);
}
catch (Exception e) { }
if (this.runnerState != JobControl.RUNNING &&
this.runnerState != JobControl.SUSPENDED) {
break;
}
}
this.runnerState = JobControl.STOPPED;
} }
JobControl
参考资料
《Hadoop技术内幕 深入理解MapReduce架构设计与实现原理》
JobControl 的实现原理的更多相关文章
- MapReduce/Hbase进阶提升(原理剖析、实战演练)
什么是MapReduce? MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算.概念"Map(映射)"和"Reduce(归约)",和他们 ...
- 奇异值分解(SVD)原理与在降维中的应用
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...
- node.js学习(三)简单的node程序&&模块简单使用&&commonJS规范&&深入理解模块原理
一.一个简单的node程序 1.新建一个txt文件 2.修改后缀 修改之后会弹出这个,点击"是" 3.运行test.js 源文件 使用node.js运行之后的. 如果该路径下没有该 ...
- 线性判别分析LDA原理总结
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结.这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结. ...
- [原] KVM 虚拟化原理探究(1)— overview
KVM 虚拟化原理探究- overview 标签(空格分隔): KVM 写在前面的话 本文不介绍kvm和qemu的基本安装操作,希望读者具有一定的KVM实践经验.同时希望借此系列博客,能够对KVM底层 ...
- H5单页面手势滑屏切换原理
H5单页面手势滑屏切换是采用HTML5 触摸事件(Touch) 和 CSS3动画(Transform,Transition)来实现的,效果图如下所示,本文简单说一下其实现原理和主要思路. 1.实现原理 ...
- .NET Core中间件的注册和管道的构建(1)---- 注册和构建原理
.NET Core中间件的注册和管道的构建(1)---- 注册和构建原理 0x00 问题的产生 管道是.NET Core中非常关键的一个概念,很多重要的组件都以中间件的形式存在,包括权限管理.会话管理 ...
- python自动化测试(2)-自动化基本技术原理
python自动化测试(2) 自动化基本技术原理 1 概述 在之前的文章里面提到过:做自动化的首要本领就是要会 透过现象看本质 ,落实到实际的IT工作中就是 透过界面看数据. 掌握上面的这样的本领 ...
- CRC、反码求和校验 原理分析
3月份开始从客户端转后台,算是幸运的进入全栈工程师的修炼阶段.这段时间一边是老项目的客户端加服务器两边的维护和交接,一边是新项目加加加班赶工,期间最长经历了连续工作三天只睡了四五个小时的煎熬,人生也算 ...
随机推荐
- Node.js的Buffer那些你可能不知道的用法
在大多数介绍Buffer的文章中,主要是围绕数据拼接和内存分配这两方面的.比如我们使用fs模块来读取文件内容的时候,返回的就是一个Buffer: fs.readFile('filename', fun ...
- 湖南大学ACM程序设计新生杯大赛(同步赛)L - Liao Han
题目描述 Small koala special love LiaoHan (of course is very handsome boys), one day she saw N (N<1e1 ...
- 洛谷P3275 [SCOI2011]糖果 [差分约束系统]
题目传送门 糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比 ...
- 使用webgl(three.js)创建3D机房,3D机房微模块详细介绍(升级版二)
序: 上节课已经详细描述了普通机房的实现过程,文章地址(https://www.cnblogs.com/yeyunfei/p/10473021.html) 紧接着上节课的内容 我们这节可来详细讲解机房 ...
- String 字符串补0
method1: 前提是你的长度已经确定!比如规定现实10位! - 优点: 不需要都是数字类型 String str_m = "123X"; String str =&q ...
- openssl-0.9.8k_WIN32(RSA密钥生成工具
韩梦飞沙 韩亚飞 313134555@qq.com yue31313 han_meng_fei_sha openssl-0.9.8k_WIN32(RSA密钥生成工具
- noip模拟 五子棋
递推+模拟.在读取数据时,我们建4个图,分别代表这个图中横.纵.左斜右斜的连续长度.例如heng[i][j]代表ij这个点所在的横着一条线的长度. 然后搜索,对于一个空点,如果他的上下都>=4那 ...
- VK Cup 2016 - Qualification Round 1 (Russian-Speaking Only, for VK Cup teams) A. Voting for Photos 水题
A. Voting for Photos 题目连接: http://www.codeforces.com/contest/637/problem/A Description After celebra ...
- Codeforces Round #304 (Div. 2) C. Soldier and Cards 水题
C. Soldier and Cards Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/546 ...
- Codeforces Round #303 (Div. 2) D. Queue 傻逼题
C. Woodcutters Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/545/probl ...