题目链接

戳我

\(Solution\)

这道题观察数据范围发现很小,再看看题目可以发现是搜索.

这题纯搜索会\(T\)所以要加入适当剪枝

  • 如果一个人后面的比赛都赢却依旧到不了目标分数,则直接\(return\)
  • 限制每个人的分数,使他的分数不超过目标分数
  • 我们用\(fx\)当做分出胜负的场次,\(fy\)当做平的场,ans当做总分数.则可以列出如下方程:

\[ \left\{
\begin{array}
fx+fy=n*(n-1)/2\\
3*fx+2*fy=ans \
\end{array}
\right.
\]

上面明显是一个二元一次方程组,可以将\(fx\)和\(fy\)解出来,这样子就可以用\(fx\)和\(fy\)限制胜负的场次和平的场次

  • 利用的是人数为\(X\),分数集合为\(A\)的比赛方案数一定,与某人详细的得分是没有关系的.所以可以用记搜.把最后几个人剩余的分数的方案数存下就好了

\(Code\)

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int mod=1e9+7;
int read(){
int x=0,f=1;char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
return x*f;
}
map<int,int> hah;
int aim[20],now[20],fx,fy,ans,b[11],n,m,js;
int dfs(int x,int y){
if(x==n) return 1;
if((n-y+1)*3<aim[x]-now[x]) return 0;
if(y==n+1){
for(int i=x+1;i<=n;i++)
b[i]=aim[i]-now[i];
sort(b+x+1,b+1+n),ans=0;
for(int i=x+1;i<=n;i++)
ans=ans*28+b[i];
if(hah.find(ans)!=hah.end()) return hah[ans];
else return hah[ans]=dfs(x+1,x+2);
}
int res=0;
if(now[x]+2<aim[x]&&fx)
now[x]+=3,fx--,res+=dfs(x,y+1),now[x]-=3,fx++;
if(now[x]<aim[x]&&now[y]<aim[y]&&fy)
now[x]++,now[y]++,fy--,res+=dfs(x,y+1),now[x]--,now[y]--,fy++;
if(now[y]+2<aim[y]&&fx)
now[y]+=3,fx--,res+=dfs(x,y+1),now[y]-=3,fx++;
return res%mod;
}
main(){
n=read(),m=n*(n-1);
for(int i=1;i<=n;i++)
aim[i]=read(),js+=aim[i];
sort(aim+1,aim+1+n);
fx=js-m,fy=(m-2*fx)>>1;
printf("%lld",dfs(1,2)%mod);
}

「HNOI 2013」比赛的更多相关文章

  1. 「HNOI 2013」游走

    题目链接 戳我 \(Solution\) 首先申明几个变量: f[x]:到点x的概率, vis[x]:x点的度 dp[x][y]:(x,y)这条边的概率 number[x][y]:x这条边的编号 下面 ...

  2. 「HNOI 2013」消毒

    题目链接 戳我 \(Solution\) 我们首先想一想如果这一题只是二维的该怎么办? 就是一个最小点覆盖问题.这里就不详细解释了,用网络流或匈牙利都无所谓. 但现在是三维的,那么现在该如何处理呢? ...

  3. 「HNOI 2013」数列

    题目链接 戳我 \(Solution\) 这道题貌似并不难的样子\(QAQ\) 我们发现这个因为有首项的关系所以有点不太好弄.所以我们要将这个首项对答案的影响给去掉. 我们可以构建一个差分数组,我们令 ...

  4. LOJ#3054. 「HNOI 2019」鱼

    LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想 ...

  5. 「HNOI 2019」白兔之舞

    一道清真的数论题 LOJ #3058 Luogu P5293 题解 考虑$ n=1$的时候怎么做 设$ s$为转移的方案数 设答案多项式为$\sum\limits_{i=0}^L (sx)^i\bin ...

  6. 「HNOI 2016」 序列

    \(Description\) 给你一个序列,每次询问一个区间,求其所有子区间的最小值之和 \(Solution\) 这里要用莫队算法 首先令\(val\)数组为原序列 我们考虑怎么由一个区间\([l ...

  7. 「HNOI 2015」实验比较

    \(Description\) 有\(n\)个元素,对于每个元素\(x_i\)最多知道一个形如\(x_j < x_i\)或\(x_j=x_i\)的条件,问有多少合法的序列.合法的序列满足每个元素 ...

  8. 「HNOI 2014」 江南乐

    \(Description\) \(n\)堆石子,每堆石子有\(s_i\)个,两个人轮流操作,每次可以将一对不少于\(F\)的石子尽量平均分成\(m\)堆,\(m\)每次自选,不能操作者输.共有\(T ...

  9. 「HNOI 2015」亚瑟王

    \(Description\) 有\(n\)张卡牌,每一张卡牌有\(p_i\)的概率发动,并造成\(d_i\)点伤害.一共有\(r\)轮,每一轮按照编号从小到大依次考虑,如果这张牌已经发动过则跳过该牌 ...

随机推荐

  1. 【314】putty 自动登录

    putty是一款好用的远程登录linux服务器软件,但每次输入用户名密码毕竟有些烦人,这里教你免用户名密码登陆. 本教程通过 *.bat 文件进行添加参数,下面为相应的代码: 方法一:(直接将密码/用 ...

  2. sql中问号是干什么的??

    第一次在后台 程序中遇到sql语句中的问号: /** * * 方法描述 : 通过账号id更新该账号状态 * @param state 状态 * @param id 账号id */ @Modifying ...

  3. 网络编程基础之Socket套接字简单应用

    一.Socket套接字实现通信循环 所谓通信循环,简单理解就是客户端可以给服务端循环发送信息并获得反馈的过程. 1.基础版 通信循环的程序分为两部分,即两个python模块,分别为客户端.py和服务端 ...

  4. pycharm打开脚本报错Gtk-Message: Failed to load module "canberra-gtk-module"

    解决方法 sudo apt-get install libcanberra-gtk-module

  5. std::mutex 引起的 C2280 尝试引用已删除的函数

    起因是把之前写的类中的 mutex 使用了(之前注释掉了没用到这个变量); 或者说添加了一个 mutex 变量, 然后 这个类有嵌套在了 其类的 map 中使用, 然后 编译 就报错 ` C2280 ...

  6. centos7 更新源 安装ifconfig

    centos7最小化安装后,ifconfig是不可用的,可以使用ip addr或ip link查看网络信息. 更新源之前,先确定网络是否连通.我用的虚拟机,因为桥接受公司ip限制,换成了NAT模式,确 ...

  7. 【SPOJ - LCS2】Longest Common Substring II【SAM】

    题意 求出多个串的最长公共子串. 分析 刚学SAM想做这个题的话最好先去做一下那道codevs3160.求两个串的LCS应该怎么求?把一个串s1建自动机,然后跑另一个串s2,然后找出s2每个前缀的最长 ...

  8. 17. Merge Two Binary Trees 融合二叉树

    [抄题]: Given two binary trees and imagine that when you put one of them to cover the other, some node ...

  9. archives of source

    "ubuntu 暂时不能解析域名 archive.ubuntu.com"怎么办? root下输入命令:lsb_release -a用来查询Ubuntu版本号 登录网站 http:/ ...

  10. JAVA 上加密算法的实现用例,MessageDigest介绍

    第 1 章基础知识 1.1. 单钥密码体制 单钥密码体制是一种传统的加密算法,是指信息的发送方和接收方共同使用同一把密钥进行加解密. 通常 , 使用的加密算法 比较简便高效 , 密钥简短,加解密速度快 ...