本文主要介绍隐马尔可夫模型以及该模型中的三大问题的解决方法。

隐马尔可夫模型的是处理序列问题的统计学模型,描述的过程为:由隐马尔科夫链随机生成不可观测的状态随机序列,然后各个状态分别生成一个观测,从而产生观测随机序列。

在这个过程中,不可观测的序列称为状态序列(state sequence), 由此产生的序列称为观测序列(observation sequence)。

该过程可通过下图描述:

上图中, $X_1,X_2,…X_T$是隐含序列,而$O_1, O_2,..O_T$是观察序列。

隐马尔可夫模型由三个概率确定:

  1. 初始概率分布,即初始的隐含状态的概率分布,记为$\pi$;
  2. 状态转移概率分布,即隐含状态间的转移概率分布, 记为$A$;
  3. 观测概率分布,即由隐含状态生成观测状态的概率分布, 记为$B$。

以上的三个概率分布可以说就是隐马尔可夫模型的参数,而根据这三个概率,能够确定一个隐马尔可夫模型$\lambda = (A, B, \pi)$。

而隐马尔科夫链的三个基本问题为:

  1. 概率计算问题。即给定模型$\lambda = (A, B, \pi)$和观测序列$O$,计算在模型$\lambda$下观测序列出现的最大概率$P(O|\lambda)$;
  2. 学习问题。即给定观测序列$O$,估计模型的参数$\lambda$, 使得在该参数下观测序列出现的概率最大,即$P(O|\lambda)$最大;
  3. 解码问题。给定模型$\lambda = (A, B, \pi)$和观测序列$O$,计算最有可能产生这个观测序列的隐含序列$X$, 即使得概率$P(X|O, \lambda)$最大的隐含序列$X$。

一、概率计算问题

概率计算问题理论上可通过穷举法来解决,即穷举所有可能的隐含状态序列,然后计算所有可能的隐含序列生成观测序列的概率,假设观测序列的长度为$n$, 且每个观测状态对应的可能的隐含状态长度为$m$, 则这种方法的时间复杂度就是$O(m^n)$, 这样的时间复杂度显然是无法接受的,因此在实际中往往不采用这种方法,而是采用前向算法和后向算法, 前向算法和后向算法都是通过动态规划来减少计算的时间复杂度,两者的不同点就是计算的方向不同。

1.1 前向算法

前向算法需要先定义前向概率:

前向概率定义为到时刻$t$为止观测序列为$o_1,o_2,o_3…o_t$,且时刻$t$的隐含状态为所有的隐含状态中的第$i$个(记为$q_i$),则前向概率可记为
$$\alpha_t(i) = P(o_1,o_2,o_3…o_t,x_t = q_i|\lambda)$$

定义了前向概率,便可递归地求解前向概率和观测序列的概率$P(o_1,o_2,o_3…o_t|\lambda)$。

初始的状态为:
$$\alpha_1(i) = \pi_ib_i(o_1)~~i=1,..m$$
上式中的$m$表示隐含状态的数目,$\pi_i$表示各个隐含状态的初始概率,$b_i(o_1)$表示第$i$个隐含状态生成观测状态$o_1$的概率。

则递推的公式为:
$$\alpha_{t+1}(i) = (\sum_{j=1}^N \alpha_t(j) a_{ji} )b_i(o_{t+1})~~i=1,..m$$
上式中的$a_{ji}$表示从隐含状态$j$转移到隐含状态$i$的状态转移概率。通过下图可较直观地看到前向递推公式的过程:

最终计算得到的概率为(其中$T$为观测序列的长度):
$$P(O|\lambda) = \sum_{i=1}^{m}\alpha_T(i)$$

1.2 后向算法

类似前向算法,后向算法也可用于求解这个问题,只是方向是从后到前的。同样的,需要先定义后向概率:

后向概率指时刻$t$的隐含状态为所有隐含状态中的第$i$个(记为$q_i$), 且时刻$t+1$到$T$的观测序列为$o_{t+1}, o_{t+2},….o_T$的概率,记为:
$$\beta_t(i) = P(o_{t+1}, o_{t+2},….o_T, x_t = q_i|\lambda)$$

初始状态定义为:
$$\beta_T(i) = 1~~i=1,2,…m$$
这里概率为1的原因是本来还需要看看时刻$T$后面有什么东西,但因为最后一个时刻$T$后面已经没有时刻,即不需要再观测某个东西,所以随便给个什么状态都可以。

递推公式为:
$$\beta_t(i) = \sum_{j=1}^ma_{ij}b_j(o_{t+1})\beta_{t+1}(j)~~i=1,2,…m$$

上面的式子中的符号与前向算法中的一致,其过程可通过下图更直观理解:

最终计算得到的概率为:
$$P(O|\lambda) = \sum_{i=1}^m \pi_ib_i(o_1)\beta_1(i)$$

分析可知,前向算法和后向算法的时间复杂度均是$O(m^2T)$,$m$为隐含状态的个数,$T$为序列长度。

二、学习问题

学习问题要根据观测序列来推导模型参数,这一类的问题对应到概率论中的极大似估计问题。但是这里是有隐含变量的极大似然估计,因此直接无法通过直接求导进行求解,而要通过EM算法来求解这一类问题。

EM 算法是一类算法,用于解决有隐含变量的概率模型参数的极大似然估计,具体到隐马尔可夫模型中的具体算法是 Baum-Welch 算法

注:这里采用 EM 算法的前提是问题仅给出了观测序列,假如同时给出了观测序列和隐含序列,可直接通过最大似然估计求解。

这里只给出 Baum-Welch 算法的流程,而省去其推导过程:
1. 初始化模型参数:选取$a_{ij}^{(0)}, b_j^{(0)}, \pi_i^{(0)}$, 得到模型$\pi^{(0)} = (A^{(0)}, B^{(0)}, \pi^{(0)})$;
2. E 步,求解两个中间变量$\gamma_t(i), \xi_t(i,j)$,两者的含义如下:
$\gamma_t(i)$:给定模型$\lambda$和观测序列$O$,在时刻$t$的隐含状态为$q_i$的概率, 即$\gamma_t(i) = P(x_t = q_i | O, \lambda)$;
$\xi_t(i,j)$:给定模型$\lambda$和观测序列$O$,在时刻$t$的隐含状态为$q_i$, 时刻$t+1$的隐含状态为$q_j$的概率, 即$\xi_t(i,j) = P(x_t = q_i, x_{t+1} = q_j | O, \lambda)$.

结合前面的前向概率和后向概率的定义,计算这两个中间变量的公式如下($m$表示隐含状态的总个数):
$$\gamma_t(i) = \frac{\alpha_t(i) \beta_t(i)}{\sum_{j=1}^m \alpha_t(j) \beta_t(j)}$$
$$\xi_t(i,j) = \frac{\alpha_t(i) a_{ij} b_j(o_{t+1})\beta_{t+1}(j)}{\sum_{p=1}^m \sum_{q=1}^m \alpha_t(p) a_{pq} b_q(o_{t+1})\beta_{t+1}(q)}$$

3. M步,同时E步求解出的两个中间变量来求解模型的参数,求解公式如下:
$$a_{ij} = \frac{\sum_{t=1}^T \xi_t(i,j)}{\sum_{t=1}^T \gamma_t(i)}$$
$$b_j(k) = \frac{\sum_{t=1}^T \gamma_t(j)I(o_t = v_k)}{\sum_{t=1}^T \gamma_t(j)}$$
$$\pi_i = \gamma_1(i)$$

上式中的$I(o_t = v_k)$表示时刻$t$的观察状态为$v_k$时, $I(o_t = v_k)$才为1,否则为0.

迭代进行E步骤和M步,将最终收敛的结果作为模型的参数.

三、解码问题

解码问题理论上也可以通过穷举法来解决,就是穷举所有可能的隐含序列并计算在这个隐含序列下观测序列的概率,并选择概率最大的那个隐含序列,但是穷举所有可能的隐含序列的时间复杂度也是指数级别的,跟第一个问题一样,在实际中往往也是不常用的。
实际中,解码问题通过动态规划来降低时间复杂度,并且已经有了成熟的解决方法,就是著名的维特比算法。

转自博文:http://wulc.me/2017/07/14/隐马尔可夫模型的三大问题及求解方法/

Machine Learning系列--隐马尔可夫模型的三大问题及求解方法的更多相关文章

  1. 隐马尔可夫模型(HMM)原理

    本文主要讨论隐马尔科夫模型的三大要素,三大假设和三大问题. 1.引入 隐马尔可夫模型是一个关于时序的概率模型,它描述了一个由隐藏的马尔可夫链生成状态序列,再由状态序列生成观测序列的过程.其中,状态之间 ...

  2. 隐马尔科夫模型(HMM)原理详解

    隐马尔可夫模型(Hidden Markov Model,HMM)是可用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM在语音识别.自然语言处理.生物信息.模 ...

  3. 隐马尔科夫模型(Hidden Markov Models) 系列之五

    转自:http://blog.csdn.net/eaglex/article/details/6458541 维特比算法(Viterbi Algorithm) 找到可能性最大的隐藏序列 通常我们都有一 ...

  4. 隐马尔科夫模型(Hidden Markov Models) 系列之三

    转自:http://blog.csdn.net/eaglex/article/details/6418219 隐马尔科夫模型(Hidden Markov Models) 定义 隐马尔科夫模型可以用一个 ...

  5. 隐马尔科夫模型(Hidden Markov Models) 系列之二

    转自:http://blog.csdn.net/eaglex/article/details/6385204 隐含模式(Hidden Patterns) 当马尔科夫过程不够强大的时候,我们又该怎么办呢 ...

  6. [综]隐马尔可夫模型Hidden Markov Model (HMM)

    http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更 ...

  7. 基于隐马尔科夫模型(HMM)的地图匹配(Map-Matching)算法

    文章目录 1. 1. 摘要 2. 2. Map-Matching(MM)问题 3. 3. 隐马尔科夫模型(HMM) 3.1. 3.1. HMM简述 3.2. 3.2. 基于HMM的Map-Matchi ...

  8. 隐马尔科夫模型HMM学习最佳范例

    谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google ...

  9. NLP —— 图模型(一)隐马尔可夫模型(Hidden Markov model,HMM)

    本文简单整理了以下内容: (一)贝叶斯网(Bayesian networks,有向图模型)简单回顾 (二)隐马尔可夫模型(Hidden Markov model,HMM) 写着写着还是写成了很规整的样 ...

随机推荐

  1. BZOJ 1975 魔法猪学院(A*求K短路)

    显然每次贪心的走最少消耗的路径即可.那么也就是找出最短路,次短路,,,K短路之后消耗E的能量的最多的路径条数. 也就是裸的A*算法. #include <bits/stdc++.h> us ...

  2. 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...

  3. scrollTop()案例

    设置 <div> 元素中滚动条的垂直偏移: 定义和用法 scrollTop() 方法返回或设置匹配元素的滚动条的垂直位置. scroll top offset 指的是滚动条相对于其顶部的偏 ...

  4. 详解SQL Server数据修复命令DBCC的使用

    严重级别为 21 表示可能存在数据损坏. 可能的原因包括损坏的页链.损坏的 IAM 或该对象的 sys.objects目录视图中存在无效条目. 这些错误通常由硬件或磁盘设备驱动程序故障而引起. MS ...

  5. 题解 P1781 【宇宙总统】

    小金羊发现用的方法和python大佬们的方法还是不一样... (大概是我太弱了qAq) emmm... (Mode:Python 3)Code: a=int(input()) #几个数 L=list( ...

  6. BZOJ2277 [Poi2011]Strongbox 【数论】

    题目链接 BZOJ2277 题解 orz太难了 如果一个数\(x\)是密码,那么所有\((x,n)\)的倍数都是密码 如果两个数\(x,y\)是密码,那么所有\((x,y)\)的倍数都是密码 那么如果 ...

  7. LUCAS定理简述

    Lucas定理解决的是n,m比较大而p是小于100000质数 简而言之就是Lucas(n,m)=C(n%p,m%p)*Lucas(n/p,m/p)%p; 其中组合数C是用任意一种计算10五次方内取模的 ...

  8. 【CodeChef】ForbiddenSum

    Portal --> CC ForbiddenSum Solution 场上想到了\(O(NM)\)的做法..然而并没有什么用 首先考虑比较简单的一个问题,给定一个数组\(A\),问这些数不能凑 ...

  9. html中的事件属性

    Window 事件属性 针对 window 对象触发的事件(应用到 <body> 标签): 属性 值 描述 onafterprint script 文档打印之后运行的脚本. onbefor ...

  10. 洛谷P1106 删数问题

    题目描述 键盘输入一个高精度的正整数N,去掉其中任意k个数字后剩下的数字按原左右次序将组成一个新的正整数.编程对给定的N和k,寻找一种方案使得剩下的数字组成的新数最小. 输出应包括所去掉的数字的位置和 ...