最近的MapReduce端的Partition根据map生成的Key来进行哈希,导致哈希出来的Reduce端处理任务数量非常不均匀,有些Reduce端处理的数据量非常小(几分钟就执行完成,而最后的part-结果显示其输出文件为0,没有处理任何任务),而有些Reduce端需要执行大量的任务(大概1个多小时)

根据下面的这篇大牛所写的文章,字符串hash算法也有很多种:

https://www.byvoid.com/en/blog/string-hash-compare

这些算法使用位运算使得每个字符都对最后的结果产生影响,作者对其展开了一系列评测,最终BKDR函数无论是在实际效果还是编码实现中,效果都是非常突出的,因此本重构也采用这种算法。

文中给出这种算法的C语言实现:

// BKDR Hash Function
unsigned int BKDRHash(char *str)
{
unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
unsigned int hash = 0; while (*str)
{
hash = hash * seed + (*str++);
} return (hash & 0x7FFFFFFF);
}

下面需要做的就是将其转换为Java实现,Java中使用long类型作为C语言中无符号整数的替代(避免int*计算的溢出),后面强制转换为int,去掉高位,并纠正“+/-”号

public static int bkdrHash(String hashString) {
long seed = 131L;
long hash = 0L;
for (int i = 0; i < hashString.length(); i++) {
char element = hashString.charAt(i);
hash = hash * seed + element;
}
int hashInt = (int) hash;
return hashInt & 0x7FFFFFFF;
}

算法修改完成后,我们需要根据实际的结果来判断是否已经hash均匀。

为了确保实际情况中的数据能够有效地哈希均匀,我们直接修改Reduce端,让其直接在reduce函数中仅将key值输出,并将所有输出合并到一个文件以便进行分析。(未设置OutputFormat,直接输出Key文本作为一行)

collector.collect(new Text(iReportKey.getPartitionKey()), new Text(""))

进行均匀的简单分析程序如下:

BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(is));
String line;
int totalCount = 0;
while ((line = bufferedReader.readLine()) != null) {
int index = Util.hashCode(line, numberPartition);
result[index]++;
totalCount++;
}
bufferedReader.close(); System.out.println("---------------------");
System.out.println("Total Count: " + totalCount);
for (int i = 0; i < numberPartition; i++) {
System.out.println(
String.format("partition=%s, count=%s, percentage=%s%%", i, result[i],
(double) result[i] * 100d / (double) totalCount));
}
System.out.println("---------------------");

默认设置10个Reduce,分别对生成的Key文件的结果进行处理:

当Map生成的Key数据总量为4390398:

Total Count: 4390398
partition=0, count=632297, percentage=14.401815051847235%
partition=1, count=410196, percentage=9.343025393142034%
partition=2, count=406882, percentage=9.267542487036483%
partition=3, count=531126, percentage=12.097445379667173%
partition=4, count=569099, percentage=12.962355576874808%
partition=5, count=324720, percentage=7.396140395472119%
partition=6, count=394503, percentage=8.985586272588499%
partition=7, count=343889, percentage=7.832752292616751%
partition=8, count=384954, percentage=8.76808890674604%
partition=9, count=392732, percentage=8.945248244008857%

数据量提高一个等级,当Map生成的Key数据总量为40976446时:

Total Count: 40976446
partition=0, count=4905825, percentage=11.972304772356294%
partition=1, count=5172735, percentage=12.623678978894363%
partition=2, count=3850931, percentage=9.397913620912853%
partition=3, count=3595419, percentage=8.774355394316043%
partition=4, count=3432017, percentage=8.375584842082205%
partition=5, count=3625976, percentage=8.848927503375965%
partition=6, count=3829224, percentage=9.344939285364084%
partition=7, count=3844329, percentage=9.381801925916172%
partition=8, count=4410943, percentage=10.76458168187646%
partition=9, count=4309047, percentage=10.515911994905561%

可以看出数据量比较符合预期,最终的实际Reduce(设置为5)效果也比较好,Reduce的执行时间变得非常均匀了:

但是经过分析后,直接将long值截取一下并不是一个好的方案,有些暴力:

int hashInt = (int) hash;

考虑将算法中的每一步局部变量都设置成int,这样就不会有截取的麻烦,将&操作放到循环内:

public static int bkdrHash(String hashString) {
int seed = 131;
int hash = 0;
for (int i = 0; i < hashString.length(); i++) {
char element = hashString.charAt(i);
hash = (hash * seed + element) & 0x7FFFFFFF;
}
return hash;
}

但是我们知道,如果int值执行乘法操作时,是有可能溢出的,表现为结果直接返回一个负数。由于我们每次循环都需要*seed,必须保证hash出来的值*seed要小于Integer.MAX_VALUE。

Integer.MAX_VALUE=2147483647
(Integer.MAX_VALUE & 0x1FFFFFFF) * 131=1610612605

1610612605会加一个char值,不可能超出最大值,于是选择0x1FFFFFFF替代0x7FFFFFFF。

于是,我们最终的hash方法更改为下面的版本:

public static int bkdrHash(String hashString) {
int seed = 131;
int hash = 0;
for (int i = 0; i < hashString.length(); i++) {
char element = hashString.charAt(i);
hash = (hash * seed + element) & 0x1FFFFFFF;
}
return hash;
}

经过hash均匀测试,也同样满足要求。

hadoop Partiton中的字符串Hash函数改进的更多相关文章

  1. 各种字符串Hash函数比较(转)

    常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法.这些函数使用位运算使得每一个字符都对最后的函数值产生影响.另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎 ...

  2. [转]各种字符串Hash函数比较

    转自:https://www.byvoid.com/zht/blog/string-hash-compare 常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法.这些 ...

  3. 【转】各种字符串Hash函数比较

    常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法.这些函数使用位运算使得每一个字符都对最后的函数值产生影响.另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎 ...

  4. [T]各种字符串Hash函数比较

    常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法.这些函数使用位运算使得每一个字符都对最后的函数值产生影响.另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎 ...

  5. 各种字符串Hash函数比较

    常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法.这些函数使用位运算使得每一个字符都对最后的函数值产生影响.另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎 ...

  6. Java中String的hash函数分析

    转载自:http://blog.csdn.net/hengyunabc/article/details/7198533 JDK6的源码: [java] view plaincopy /** * Ret ...

  7. 各种字符串Hash函数(转)

    /// @brief BKDR Hash Function /// @detail 本 算法由于在Brian Kernighan与Dennis Ritchie的<The C Programmin ...

  8. 长度有限制的字符串hash函数

    长度有限制的字符串hash函数 DJBHash是一种非常流行的算法,俗称"Times33"算法.Times33的算法很简单,就是不断的乘33,原型如下 hash(i) = hash ...

  9. 字符串hash函数

    本文搜集了一些字符串的常用hash函数. 范例1:判断两个单词是否含有相同的字母,此时我们可以用hash做.例如,“aaabb”与"aabb"含有相同的单词.(参考:http:// ...

随机推荐

  1. cursor游标(mysql)

    /* 游标 cursor 什么是游标?为什么需要游标 使用存储过程对sql进行编程的时候,我们查询的语句可能是数据是多个,它总是一口气全部执行,我们无法针对每一条进行判断.也就是说,我们无法控制程序的 ...

  2. Corosync+pacemaker实现集群的高可用

    一.Corosync和pacemaker的了解: Corosync是集群管理套件的一部分,他在传递信息的时候可以通过一个简单的配置文件来定义信息传递的方式和协议等.也就是说,corosync是Mess ...

  3. mac 使用 pf 做端口转发

    Mac os中我发现直接输入localhost是拒绝访问的,原因在于OSX 对于1024内端口需要 root 权限,因此需要做一个80端口的转发. 曾经的 ipfw 已经被 pf 所替换. 首先我们要 ...

  4. live555源码分析

    live555源代码下载(VC6工程):http://download.csdn.net/detail/leixiaohua1020/6374387 liveMedia 项目(http://www.l ...

  5. React状态管理之redux

    其实和vue对应的vuex都是差不多的东西,这里稍微提一下(安装Redux略过): import { createStore, combineReducers, applyMiddleware } f ...

  6. java作业调度框架Quartz

    在软件开发中,很多时候需要在特定时间的时间执行某些操作,比如每天的凌晨三点.每周的周日.每个月的15号,Apache Quartz就是一个开源的作业调度框架,可以让计划的程序任务一个预定义的日期和时间 ...

  7. CBUS转MQTT

    CBUS转MQTT,楼宇控制协议通过迈思德网关转MQTT

  8. 圣诞节为大家推荐一些学习java书籍

    怎样学习才能从一名Java初级程序员成长为一名合格的架构师,或者说一名合格的架构师应该有怎样的技术知识体系,这是不仅一个刚刚踏入职场的初级程序员也是工作一两年之后开始迷茫的程序员经常会问到的问题 初级 ...

  9. 【剑指offer】链表中倒数第k个节点,C++实现(链表)

    1.题目 输入一个链表,输出该链表中倒数第k个结点.链表的尾节点是倒数第一个节点. struct ListNode { int val; struct ListNode *next; } 2.思路   ...

  10. Hibernate 一对一 (one-to-one)

    一对一(one-to-one)实例(Person-IdCard) 一对一的关系在数据库中表示为主外关系.例如.人和身份证的关系.每个人都对应一个身份证号.我们应该两个表.一个是关于人信息的表(Pers ...