[Functional Programming] Working with two functors(Applicative Functors)-- Part1 --.ap
What is applicative functor:
the ability to apply functors to each other.
For example we have tow functors: Container(2), Container(3)
// We can't do this because the numbers are bottled up.
add(Container.of(), Container.of()); // NaN
We cannot just add two functors!
Instead we should do:
const map = (fn, m) => m.map(fn);
const containerOfAdd2 = map(add(), Container.of()); // Container(5)
or
Container.of().chain(two => Container.of().map(add(two)));
Previous solution should work. but there are better way to do it:
1. ap
Container.prototype.ap = function (otherContainer) {
return otherContainer.map(this.$value);
};
As you can see, 'ap' takes a fuctor then applya map to it.
We can see ap:
Container.of().map(add).ap(Container.of()); // Container(5)
Or, we add lift 'add(2)' into Container, then apply Container(3):
Container.of(add()).ap(Container.of()); // Container(5)
Because 'add' is partially applied in add(2), when doing '.ap(Container.of(3))', we give the rest input '3' to it.
Now, we can define applicative functor in programming language:
An applicative functor is a pointed functor with an
ap
method
Note the dependence on pointed.
Laws behind:
F.of(x).map(f) === F.of(f).ap(F.of(x))
Main idea is: lift 'f' (function) into Functor, then 'ap' (apply) another Functor with the value (x).
Some example:
Maybe.of(add).ap(Maybe.of()).ap(Maybe.of()) // Just(5)
Task.of(add).ap(Task.of()).ap(Task.of()) // Task(5)
Equals:
Maybe.of(add()).ap(Maybe.of()) // Just(5)
Task.of(add()).ap(Task.of()) // Task(5)
More examples:
// Http.get :: String -> Task Error HTML const renderPage = curry((destinations, events) => { /* render page */ }); Task.of(renderPage).ap(Http.get('/destinations')).ap(Http.get('/events'));
// Task("<div>some page with dest and events</div>")
// $ :: String -> IO DOM
const $ = selector => new IO(() => document.querySelector(selector)); // getVal :: String -> IO String
const getVal = compose(map(prop('value')), $); // signIn :: String -> String -> Bool -> User
const signIn = curry((username, password, rememberMe) => { /* signing in */ }); IO.of(signIn).ap(getVal('#email')).ap(getVal('#password')).ap(IO.of(false));
// IO({ id: 3, email: 'gg@allin.com' })
----
const R = require('ramda'); class Container {
static of(x) {
return new Container(x);
} constructor(x) {
this.$value = x;
} map (fn) {
return Container.of(fn(this.$value));
} ap (functor) {
return functor.map(this.$value);
} join() {
return this.$value;
} chain(fn) {
return this.map(fn).join();
} inspect() {
return `Container(${this.$value})`;
}
} class Maybe {
get isNothing() {
return this.$value === null || this.$value === undefined;
} get isJust() {
return !this.isNothing;
} constructor(x) {
this.$value = x;
} inspect() {
return this.isNothing ? 'Nothing' : `Just(${this.$value})`;
} // ----- Pointed Maybe
static of(x) {
return new Maybe(x);
} // ----- Functor Maybe
map(fn) {
return this.isNothing ? this : Maybe.of(fn(this.$value));
} // ----- Applicative Maybe
ap(f) {
return this.isNothing ? this : f.map(this.$value);
} // ----- Monad Maybe
chain(fn) {
return this.map(fn).join();
} join() {
return this.isNothing ? this : this.$value;
} // ----- Traversable Maybe
sequence(of) {
this.traverse(of, identity);
} traverse(of, fn) {
return this.isNothing ? of(this) : fn(this.$value).map(Maybe.of);
}
} const add = a => b => a + b;
const map = (fn, m) => m.map(fn);
const notWorking = add(Container.of(2), Container.of(3));
const containerOfAdd2 = map(add(3), Container.of(2));
console.log(containerOfAdd2); // Contianer(5) const works = Container.of(2).chain(v => Container.of(3).map(add(v)));
console.log(works); // Contianer(5) const ap = Container.of(2).map(add).ap(Container.of(3));
console.log(ap) const ap2 = Container.of(add(2)).ap(Container.of(3));
console.log(Maybe.of(add).ap(Maybe.of(2)).ap(Maybe.of(3)))
console.log(Maybe.of(add(2)).ap(Maybe.of(3)))
[Functional Programming] Working with two functors(Applicative Functors)-- Part1 --.ap的更多相关文章
- [Functional Programming] Working with two functors(Applicative Functors)-- Part2 --liftAN
Let's examine a pointfree way to write these applicative calls. Since we know map is equal to of/ap, ...
- UCF Local Programming Contest 2016 J题(二分+bfs)
题目链接如下: https://nanti.jisuanke.com/t/43321 思路: 显然我们要采用二分的方法来寻找答案,给定一个高度如果能确定在这个高度时是否可以安全到达终点,那我们就可以很 ...
- Programming | 中/ 英文词频统计(MATLAB实现)
一.英文词频统计 英文词频统计很简单,只需借助split断句,再统计即可. 完整MATLAB代码: function wordcount %思路:中文词频统计涉及到对"词语"的判断 ...
- Coursera Algorithms Programming Assignment 4: 8 Puzzle (100分)
题目原文:http://coursera.cs.princeton.edu/algs4/assignments/8puzzle.html 题目要求:设计一个程序解决8 puzzle问题以及该问题的推广 ...
- Coursera Algorithms Programming Assignment 3: Pattern Recognition (100分)
题目原文详见http://coursera.cs.princeton.edu/algs4/assignments/collinear.html 程序的主要目的是寻找n个points中的line seg ...
- The 2019 Asia Nanchang First Round Online Programming Contest C. Hello 2019(动态dp)
题意:要找到一个字符串里面存在子序列9102 而不存在8102 输出最小修改次数 思路:对于单次询问 我们可以直接区间dpOn求出最小修改次数 但是对于多次询问 我在大部分题解看到的解释一般是用线段树 ...
- Functional Programming 资料收集
书籍: Functional Programming for Java Developers SICP(Structure and Interpretation of Computer Program ...
- Adaptive AUTOSAR 学习笔记 3 - AP 背景、技术及特征(中文翻译)
本系列学习笔记基于 AUTOSAR Adaptive Platform 官方文档 R20-11 版本.本文从AUTOSAR_EXP_PlatformDesign.pdf开始,一边学习,一边顺带着翻译一 ...
- windows下gVim(Vi/vim)基本使用
Vim 是一个Linux 平台上功能非常强大的编辑器,他是早年的Vi 编辑器的加强版.这个gVim 是windows 版的,并且有了标准的windows 风格的图形界面,所以叫g(graphical) ...
随机推荐
- 【我要学python】函数的系统学习
我的短期目标:python+CTF reverse 一起加油! #1,函数介绍 1,功能性 函数目的 2,隐藏性 (封装) (避免写重复代码) 例: #round为保留小数的函数 a = 3.1415 ...
- C#多线程编程实战(一):线程基础
1.1 简介 为了防止一个应用程序控制CPU而导致其他应用程序和操作系统本身永远被挂起这一可能情况,操作系统不得不使用某种方式将物理计算分割为一些虚拟的进程,并给予每个执行程序一定量的计算能力.此外操 ...
- (转)Ubuntu 16.04 安裝Docker(PS:本文适用amd64位的ubuntu系统)
1.前置安裝,確保你的系統是64位 $ sudo apt-get install \ apt-transport-https \ ca-certificates \ curl \ software-p ...
- 【BZOJ 2916】 2916: [Poi1997]Monochromatic Triangles (容斥)
2916: [Poi1997]Monochromatic Triangles Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 310 Solved: 1 ...
- 【BZOJ 2006】2006: [NOI2010]超级钢琴(RMQ+优先队列)
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2792 Solved: 1388 Description 小 ...
- PHP 笔记——Array 数组
要点 说明 数组构成 数组是由一个或多个数组元素组成的 数组元素 每个数组元素由键(Key)和值(Value)构成 键 元素的识别名称,也被称为数组下标 值 元素的内容 映射 键 和 值 之间存在一种 ...
- 「Luogu4321」随机游走
「Luogu4321」随机游走 题目描述 有一张 \(n\) 个点 \(m\) 条边的无向图,\(Q\) 组询问,每次询问给出一个出发点和一个点集 \(S\) ,求从出发点出发随机游走走遍这个点集的期 ...
- [BZOJ4825][HNOI2017]单旋(线段树+Splay)
4825: [Hnoi2017]单旋 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 667 Solved: 342[Submit][Status][ ...
- hdu 3001 三进制状压
题意:tsp问题,但是每个点可以最多走两次 链接:点我 转移方程见代码 #include<iostream> #include<cstdio> #include<cstr ...
- 1.6(SQL学习笔记)存储过程
一.什么事存储过程 可以将存储过程看做是一组完成某个特定功能的SQL语句的集合. 例如有一个转账功能(A向B转账50),先将账户A中金额扣除50,然后将账户B中金额添加50. 那么我们可以定义一个名为 ...