It turns out that you are a great fan of rock band AC/PE. Peter learned that and started the following game: he plays the first song of the list of n songs of the group, and you have to find out the name of the song. After you tell the song name, Peter immediately plays the following song in order, and so on.

The i-th song of AC/PE has its recognizability pi. This means that if the song has not yet been recognized by you, you listen to it for exactly one more second and with probability of pi percent you recognize it and tell it's name. Otherwise you continue listening it. Note that you can only try to guess it only when it is integer number of seconds after the moment the song starts playing.

In all AC/PE songs the first words of chorus are the same as the title, so when you've heard the first ti seconds of i-th song and its chorus starts, you immediately guess its name for sure.

For example, in the song Highway To Red the chorus sounds pretty late, but the song has high recognizability. In the song Back In Blue, on the other hand, the words from the title sound close to the beginning of the song, but it's hard to name it before hearing those words. You can name both of these songs during a few more first seconds.

Determine the expected number songs of you will recognize if the game lasts for exactly T seconds (i. e. you can make the last guess on the second T, after that the game stops).

If all songs are recognized faster than in T seconds, the game stops after the last song is recognized.

Input

The first line of the input contains numbers n and T (1 ≤ n ≤ 5000, 1 ≤ T ≤ 5000), separated by a space. Next n lines contain pairs of numbers pi and ti (0 ≤ pi ≤ 100, 1 ≤ ti ≤ T). The songs are given in the same order as in Petya's list.

Output

Output a single number — the expected number of the number of songs you will recognize in T seconds. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Examples
input

Copy
2 2
50 2
10 1
output

Copy
1.500000000
input

Copy
2 2
0 2
100 2
output

Copy
1.000000000
input

Copy
3 3
50 3
50 2
25 2
output

Copy
1.687500000
input

Copy
2 2
0 2
0 2
output

Copy
1.000000000

题意:给出n首歌,每首歌长度为t[i]分钟,在歌曲播放的每分钟里都有p[i]的概率猜出歌名,如果猜出就会跳下一首,否则等这首歌放完了也会切下一首,求T秒时听歌数的期望。
题解:令dp[i][j]表示第j分钟恰好听出第i首歌的概率,那么答案就是所有的dp[i][j](i<=n,j<=t)之和
考虑转移:
这首歌在第j秒听完的概率只会从他之前t[i]秒转移过来,所以dp的转移如下
dp[i][j]=∑(dp[i-1][j-k]*(1-p[i])^(k-1)*p[i]
)+dp[i][j-t[i]]*(1-p[i])^(t[i]-1)(k<t[i]); 代码如下:
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; double dp[][],p[];
int n,t,tt[]; double kasumi(double a,int b)
{
double ans=1.0;
while(b)
{
if(b&)
{
ans=ans*a;
}
a=a*a;
b>>=;
}
return ans;
} int main()
{
scanf("%d%d",&n,&t);
for(int i=;i<=n;i++)
{
scanf("%lf%d",&p[i],&tt[i]);
p[i]/=;
}
dp[][]=;
double ans=0.0;
for(int i=;i<=n;i++)
{
double sum=;
double kth=kasumi(-p[i],tt[i]-);
for(int j=;j<=t;j++)
{
sum*=-p[i];
sum+=dp[i-][j-]*p[i];
if(j>=tt[i])
{
sum-=dp[i-][j-tt[i]]*kth*p[i];
dp[i][j]+=dp[i-][j-tt[i]]*kth;
}
dp[i][j]+=sum;
ans+=dp[i][j];
}
}
printf("%.6lf\n",ans);
}
 

CodeForces 499D. Name That Tune(概率dp)的更多相关文章

  1. Codeforces 498B Name That Tune 概率dp (看题解)

    Name That Tune 刚开始我用前缀积优化dp, 精度炸炸的. 我们可以用f[ i ][ j ] 来推出f[ i ][ j + 1 ], 记得加加减减仔细一些... #include<b ...

  2. CodeForces 540D--Bad Luck Island(概率DP)

    貌似竟然是我的第一道概率DP.. 手机码代码真不舒服.... /************************************************ Memory: 67248 KB Ti ...

  3. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  4. CodeForces 24D Broken robot (概率DP)

    D. Broken robot time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  5. Codeforces Round #284 (Div. 2) D. Name That Tune [概率dp]

    D. Name That Tune time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  6. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  7. CodeForces 148D-Bag of mice(概率dp)

    题意: 袋子里有w个白球b个黑球,现在两个人轮流每次取一个球(不放回),先取到白球的获胜,当后手取走一个球时,袋子里的球会随机的漏掉一个,问先手获胜的概率. 分析: dp[i][j]表示袋子中i个白球 ...

  8. Codeforces 1151F Sonya and Informatics (概率dp)

    大意: 给定01序列, 求随机交换k次后, 序列升序的概率. 假设一共$tot$个$0$, 设交换$i$次后前$tot$个数中有$j$个$0$的方案数为$dp[i][j]$, 答案即为$\frac{d ...

  9. Codeforces 513G1 513G2 Inversions problem [概率dp]

    转自九野:http://blog.csdn.net/qq574857122/article/details/43643135 题目链接:点击打开链接 题意: 给定n ,k 下面n个数表示有一个n的排列 ...

随机推荐

  1. Ubuntu13.10:密码忘记了怎么办?

    重启ubuntu系统,开机时长按shift按键进入GRUB菜单,选择第二个高级模式. 新版的UBUNTU系统居然启用了GRUNB2.0的内核!虽然传说相当的牛X,但是用起来感觉就是非常看不清楚字体,要 ...

  2. 在ubuntu中添加新硬盘

    在ubuntu中添加新硬盘 转载于 http://www.cnblogs.com/unipower/archive/2009/03/08/1406230.html  前言 安装新硬盘这种事情并不会经常 ...

  3. VC6.0打开文件是卡死的解决办法

    删除工程目录下的 .ncb .opt 文件,然后就OK了!

  4. Swift 延迟运行代码

    // // DelayRun.swift // // Created by XuQing on 16/7/1. // Copyright © 2016年 xuqing. All rights rese ...

  5. C#中的四舍五入有多坑

    原文:C#中Math.Round()实现中国式四舍五入 C#中的Math.Round()并不是使用的"四舍五入"法.其实在VB.VBScript.C#.J#.T-SQL中Round ...

  6. 关于 Apache Shiro 详解

    1.1  简介 Apache Shiro是Java的一个安全框架.目前,使用Apache Shiro的人越来越多,因为它相当简单,对比Spring Security,可能没有Spring Securi ...

  7. H5 css学习

    p{text-indent:2em;}段前空两格   段落排版--行间距(行高) p{line-height:1.5em;} 段落排版--中文字间距.字母间距  h1{    letter-spaci ...

  8. Linux下安装Nginx详细图解教程(一)

    什么是Nginx? Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器,在高连接并发的情况下N ...

  9. Redis学习(1)——下载与配置[转]

    Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.从2010年3月15日起,Redis的开发工作由VMware主 ...

  10. oracle数据库学习记录(持续更新中...)

    --------------------------------------------day1------------------------------------------------- 1. ...