可推出$a_n = n^2+n, $ 设\(S_n = \sum_{i=1}^{n} a_i\) 则 \(S_n = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}\)

需要求出\([1,N]\)中与\(M\)互质的下标的和

可以容斥计算答案,\(O(1)\)时间算出\(S_n\),需要减去与\(M\)非互质的下标\(a_i\)

对于\(M\)的每一种质因数的组合\(k\),可以求出\(b_kn = (kn)^2+kn\),则也可以\(O(1)\)得到在\(bn在[1-N]\)中的和.

根据容斥原理,奇数个质因子的组合要减去,偶数个的加回

#include <iostream>
#include <string>
#include <cmath>
#include <stdio.h>
#include <vector>
using namespace std;
const int mod= 1e9+7;
typedef long long LL;
vector<LL> fac; LL qpow(LL a,LL n)
{
LL res=1;
while(n){
if(n&1) res = res*a %mod;
a = a*a %mod;
n>>=1;
}
return res;
} LL solve(LL n,LL m)
{
LL rev6 = qpow((LL)6,mod-2);
LL rev2 = qpow((LL)2,mod-2);
fac.clear();
LL tmp = m;
for(LL i=2;i*i<=tmp;++i){
if(tmp%i==0){
fac.push_back(i);
while(tmp%i==0) tmp/=i;
}
}
if(tmp>1) fac.push_back(tmp); LL res = n *(n+1) %mod *(2*n+1) %mod *rev6 %mod;
LL t = n*(n+1) %mod *rev2 %mod;
res = (res+t) %mod; int len = fac.size();
int tot = 1<<len;
for(int i=1;i<tot;++i){
int cnt = __builtin_popcount(i);
LL tmp =1;
for(int j = 0;j<len;++j){
if(i&(1<<j)){
tmp *= fac[j];
}
}
LL nn = n/tmp;
LL pt = (nn)%mod *(nn+1)%mod *(2*nn+1) %mod*rev6%mod;
pt = pt*tmp %mod *tmp %mod;
pt = (pt+nn*(tmp+tmp*nn)%mod*rev2%mod) %mod;
if(cnt&1) res = (res-pt+mod)%mod;
else res = (res+pt)%mod;
}
return res;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
LL N,M;
while(scanf("%lld %lld",&N,&M)==2){
LL res = solve(N,M);
printf("%lld\n",res);
}
return 0;
}

ACM-ICPC 2018 沈阳赛区网络预赛 G. Spare Tire (容斥原理)的更多相关文章

  1. ACM-ICPC 2018 沈阳赛区网络预赛 G Spare Tire (素因子分解+容斥)

    . 样例输入复制 4 4 样例输出复制 14 #include<bits/stdc++.h> using namespace std; typedef long long ll; cons ...

  2. ACM-ICPC 2018 沈阳赛区网络预赛 G Spare Tire(容斥)

    https://nanti.jisuanke.com/t/31448 题意 已知a序列,给你一个n和m求小于n与m互质的数作为a序列的下标的和 分析 打表发现ai=i*(i+1). 易得前n项和为 S ...

  3. ACM-ICPC 2018 沈阳赛区网络预赛 G. Spare Tire

    这题很好啊,好在我没做出来...大概分析了一下,题目大概意思就是求 问所有满足1<=i<=n且i与m互素的ai之和 最开始我们队的做法是类似线性筛的方法去筛所有数,把数筛出来后剩下数即可, ...

  4. ACM-ICPC 2018 沈阳赛区网络预赛 G 容斥原理

    https://nanti.jisuanke.com/t/31448 解析 易得an=n*n+n O(1)得到前n项和  再删除与m不互素的数  我们用欧拉函数求出m的质因数  枚举其集合的子集 进行 ...

  5. 【ACM-ICPC 2018 沈阳赛区网络预赛 G】Spare Tire

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 让你求出1..n中和m互质的位置i. 让你输出∑ai 这个ai可以oeis一波. 发现是ai = i(i+1) 1..n中和m互质的 ...

  6. ACM-ICPC 2018 沈阳赛区网络预赛 J树分块

    J. Ka Chang Given a rooted tree ( the root is node 11 ) of NN nodes. Initially, each node has zero p ...

  7. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  8. ACM-ICPC 2018 沈阳赛区网络预赛 K Supreme Number(规律)

    https://nanti.jisuanke.com/t/31452 题意 给出一个n (2 ≤ N ≤ 10100 ),找到最接近且小于n的一个数,这个数需要满足每位上的数字构成的集合的每个非空子集 ...

  9. ACM-ICPC 2018 沈阳赛区网络预赛-K:Supreme Number

    Supreme Number A prime number (or a prime) is a natural number greater than 11 that cannot be formed ...

随机推荐

  1. 【python】NLTK好文

    From:http://m.blog.csdn.net/blog/huyoo/12188573 nltk是一个python工具包, 用来处理和自然语言处理相关的东西. 包括分词(tokenize), ...

  2. WebGL中图片多级处理(FrameBuffer)

    在webgl的使用过程中,我们通常会想对texture进行多级处理并对其贴在表面显示 如对较精准的边缘检测,要先后使用灰度shader.模糊shader.边缘shader来进行处理,而每次的处理对象则 ...

  3. Laravel5.1 搭建博客 --编译前端文件

    上篇文章写了Gulp编译前端文件,这篇记录下在搭建博客中使用Gulp 1 引入bootstrap和js 1.1 首先先在项目本地安装Bower sudo npm install bower 1.2 创 ...

  4. 通过HttpWebRequest在后台对WebService进行调用

    目录: 1 后台调用Webservice的业务需求 2 WebService支持的交互协议 3 如何配置WebService支持的协议 4 后台对WebService的调用 4.1 SOAP 1.1 ...

  5. jquery书写一个简易的二级联动

    先用php生成一个json数组示例如下 JSON_UNESCAPED_UNICODE 是对汉字进行处理的参数 然后HTML代码如下 把那个json_city赋值成我们用php生成的json即可 < ...

  6. SecureCRT 常用技巧

    转自:http://blog.chinaunix.net/uid-26575352-id-3063143.html 快捷键: 1. ctrl + a :  移动光标到行首 2. ctrl + e :移 ...

  7. Java实现简单的文件复制

    public class FileCopy { public static void main(String[] args) { String path = "d:\\1.txt" ...

  8. U盘插入拔出提示

    Unit Unit1; Interface Uses Windows, Messages, SysUtils, Variants, classes, Graphics, Controls, Forms ...

  9. 初级Java面试题 – SSM框架篇

    加入我的QQ群(701974765) 获取更多好用又好玩的软件,还有不定期发放的福利呦(- ̄▽ ̄)- Spring的优点/对Spring的理解 Spring的AOP编程 Spring的IOC Spri ...

  10. AJAX Form Submit Framework 原生js post json

    https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest <!doctype ht ...