https://en.wikipedia.org/wiki/Wiener_filter

Wiener filter solutions

The Wiener filter problem has solutions for three possible cases: one where a noncausal filter is acceptable (requiring an infinite amount of both past and future data), the case where a causal filter is desired (using an infinite amount of past data), and the finite impulse response (FIR) case where a finite amount of past data is used. The first c

ase is simple to solve but is not suited for real-time applications. Wiener's main accomplishment was solving the case where the causality requirement is in effect, and in an appendix of Wiener's book Levinson gave the FIR solution.

Noncausal solution

Where  are spectra. Provided that  is optimal, then the minimum mean-square error equation reduces to

and the solution  is the inverse two-sided Laplace transform of .

Causal solution

where

  •  consists of the causal part of  (that is, that part of this fraction having a positive time solution under the inverse Laplace transform)
  •  is the causal component of  (i.e., the inverse Laplace transform of  is non-zero only for )
  •  is the anti-causal component of  (i.e., the inverse Laplace transform of  is non-zero only for )

This general formula is complicated and deserves a more detailed explanation. To write down the solution  in a specific case, one should follow these steps:[2]

  1. Start with the spectrum  in rational form and factor it into causal and anti-causal components:

    where  contains all the zeros and poles in the left half plane (LHP) and  contains the zeroes and poles in the right half plane (RHP). This is called the Wiener–Hopf factorization.

  2. Divide  by  and write out the result as a partial fraction expansion.
  3. Select only those terms in this expansion having poles in the LHP. Call these terms .
  4. Divide  by . The result is the desired filter transfer function .

原始文件,环境噪音已经很弱了

逐帧实时维纳滤波后

基于winner 滤波平稳降噪效果的更多相关文章

  1. 基于粒子滤波的物体跟踪 Particle Filter Object Tracking

    Video来源地址 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去.一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu ...

  2. 基于GPUImage的实时美颜滤镜

    1.背景 前段时间由于项目需求,做了一个基于GPUImage的实时美颜滤镜.现在各种各样的直播.视频App层出不穷,美颜滤镜的需求也越来越多.为了回馈开源,现在我把它放到了GitHub https:/ ...

  3. 【目标跟踪】相关滤波算法之MOSSE

    简要 2010年David S. Bolme等人在CVPR上发表了<Visual Object Tracking using Adaptive Correlation Filters>一文 ...

  4. 目标跟踪之粒子滤波---Opencv实现粒子滤波算法

    目标跟踪学习笔记_2(particle filter初探1) 目标跟踪学习笔记_3(particle filter初探2) 前面2篇博客已经提到当粒子数增加时会内存报错,后面又仔细查了下程序,是代码方 ...

  5. Canny边缘检测算法(基于OpenCV的Java实现)

    目录 Canny边缘检测算法(基于OpenCV的Java实现) 绪论 Canny边缘检测算法的发展历史 Canny边缘检测算法的处理流程 用高斯滤波器平滑图像 彩色RGB图像转换为灰度图像 一维,二维 ...

  6. Analysis of Two-Channel Generalized Sidelobe Canceller (GSC) With Post-Filtering

    作者:凌逆战 地址:https://www.cnblogs.com/LXP-Never/p/12071748.html 题目:带后置滤波的双通道广义旁瓣相消器(GSC)的分析 作者:Israel Co ...

  7. 论文阅读:Siam-RPN

    摘要 Siam-RPN提出了一种基于RPN的孪生网络结构.由孪生子网络和RPN网络组成,它抛弃了传统的多尺度测试和在线跟踪,从而使得跟踪速度非常快.在VOT实时跟踪挑战上达到了最好的效果,速度最高16 ...

  8. 声学回声消除(Acoustic Echo Cancellation)

    回声就是声音信号经过一系列反射之后,又听到了自己讲话的声音,这就是回声.一些回声是必要的,比如剧院里的音乐回声以及延迟时间较短的房间回声:而大多数回声会造成负面影响,比如在有线或者无线通信时重复听到自 ...

  9. Kernel methods on spike train space for neuroscience: a tutorial

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人 ...

随机推荐

  1. java多线程系类:JUC原子类:03之AtomicLongArray原子类

    概要 AtomicIntegerArray, AtomicLongArray, AtomicReferenceArray这3个数组类型的原子类的原理和用法相似.本章以AtomicLongArray对数 ...

  2. ES5基础之正则表达式01:初次见面

    1.正则初次见面 测试地址:https://regexper.com 第一个正则:匹配 2006-10-11 或 2006/10/11 var reg = /^\d{4}[-/]\d{2}[-/]\d ...

  3. 关于Oracle AUTONOMOUS TRANSACTION(自治事务)的介绍

    AUTONOMOUS TRANSACTION(自治事务)的介绍 在基于低版本的ORACLE做一些项目的过程中,有时会遇到一些头疼的问题,比如想在执行当前一个由多个DML组成的transaction(事 ...

  4. asp.net(C#)网站发布后 Global.asax 里 Application_Error 不执行的问题

    现象 在 Global.asax 用 Application_Error 捕捉了http的404,500等错误,在本机测试正常,发布后无效,几经周折终于解决了... 程序是这样设计的 Applicat ...

  5. CSS基本知识1-CSS基本概念

    CSS基本概念: 选择器{属性:值;属性:值} CSS继承:子元素继承父元素样式,父子关系看DOM结构. CSS覆盖: 浏览器缺省设置 外部样式表 内部样式表(位于 <head> 标签内部 ...

  6. XRecyclerView Scrapped or attached views may not be recycled

    将XRecyclerView布局设置为 android:layout_width="match_parent"android:layout_height="match_p ...

  7. Linux下常用SVN命令

    1.将文件checkout到本地目录 svn checkout path(path是服务器上的目录) 例如:svn checkout svn://192.168.1.1/pro/domain  --u ...

  8. Mysql 命令大全

    1.连接Mysql 格式: mysql -h主机地址 -u用户名 -p用户密码1.连接到本机上的MYSQL.首先打开DOS窗口,然后进入目录mysql\bin,再键入命令mysql -u root - ...

  9. Ruby升级的最新方法

    今天安装cocoapods时候出现了下面的提示Error installing pods:active support requires Ruby version >= 2.2.0这个需求的意思 ...

  10. Java的多线程机制系列:(一)总述及基础概念

    前言 这一系列多线程的文章,一方面是个人对Java现有的多线程机制的学习和记录,另一方面是希望能给不熟悉Java多线程机制.或有一定基础但理解还不够深的读者一个比较全面的介绍,旨在使读者对Java的多 ...