题目描述:

给出3个正整数A B C,求A^B Mod C。

例如,3 5 8,3^5 Mod 8 = 3。

Input3个正整数A B C,中间用空格分隔。(1 <= A,B,C <= 10^9)Output输出计算结果Sample Input

3 5 8

Sample Output

3

代码实现:

#include<bits/stdc++.h>

using namespace std;

long long int pow_mod(long long int a, long long int k, long long int c)
{
long long int ans = 1;
while(k)
{
if(k % 2) ans *= a;
a = (a * a) % c;
k /= 2;
ans %= c;
}
return ans;
} int main()
{
long long int a, b, c;
scanf("%lld %lld %lld", &a, &b, &c);
a %= c;
printf("%lld\n",pow_mod(a,b,c));
return 0;
}

A^B Mod C (快速幂)的更多相关文章

  1. A^B mod C (快速幂+快速乘+取模)题解

    A^B mod C Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,B,C<2^63). ...

  2. FZU-1752.(A^B mod C)(快速幂与快速乘优化)

    我把自己演哭了... 心酸.jpg 写了很多个版本的,包括数学公式暴力,快速幂TLE等等,最后想到了优化快速幂里的乘法,因为会爆longlong,但是和别人优化的效率简直是千差万别...? 本题大意: ...

  3. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  4. HDU 5793 A Boring Question (逆元+快速幂+费马小定理) ---2016杭电多校联合第六场

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  5. HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)

    传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...

  6. hihocoder第41周 骨牌覆盖(矩阵快速幂)

    由于棋盘只有两行,所以如果第i列的骨牌竖着放,那么就转移为第1列到第i-1列骨牌有多少种摆法 如果第一行第i列骨牌横着放,那么第二行第i列也要横着放,那么就转移为了第1列到第i-2列骨牌有多少种方法 ...

  7. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  8. 2013长春网赛1009 hdu 4767 Bell(矩阵快速幂+中国剩余定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:求集合{1, 2, 3, ..., n}有多少种划分情况bell[n],最后结果bell[ ...

  9. csu 1556(快速幂)

    1556: Jerry's trouble Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 787  Solved: 317[Submit][Statu ...

  10. ACM数论-快速幂

    ACM数论——快速幂 快速幂定义: 顾名思义,快速幂就是快速算底数的n次幂.其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高. 原理: 以下以求a的b次方来介绍: 把b转换成 ...

随机推荐

  1. SVN_03绿色版

    1.首先备份当前安装visualSVN文件的bin目录,万一出错还能反个水.一般默认安装路径是C:\Program Files(x86)VisualSVN\bin 2.然后运行ildasm,Windo ...

  2. selenium2自动化测试实战--基于Python语言

    自动化测试基础 一. 软件测试分类 1.1 根据项目流程阶段划分软件测试 1.1.1 单元测试 单元测试(或模块测试)是对程序中的单个子程序或具有独立功能的代码段进行测试的过程. 1.1.2 集成测试 ...

  3. 理解Java序列化中的SerialVersionUid

    一.前言 SerialVersionUid,简言之,其目的是序列化对象版本控制,有关各版本反序列化时是否兼容.如果在新版本中这个值修改了,新版本就不兼容旧版本,反序列化时会抛出InvalidClass ...

  4. pc端vue 滚动到底部翻页

    html: <div class="list" ref="scrollTopList"> <div class="listsmall ...

  5. vue-resource发送请求

    <!DOCTYPE html> <html> <head> <title>vue-resource</title> <meta cha ...

  6. ios获取数组中的最大值

    在编码过程中,我们通常碰到一组数据,需要自己简单的处理下,拿到数组中的总和,大小和平均值数据. 1.简单粗暴的方法,快速求和. NSArray * array = @[@"35", ...

  7. pip3升级问题

    输入命令sudo pip3 install --upgrade pip 升级完成之后执行pip命令会报错,错误信息如下: File "/usr/bin/pip3", line 9, ...

  8. spark 机器学习 knn 代码实现(二)

    通过knn 算法规则,计算出s2表中的员工所属的类别原始数据:某公司工资表 s1(训练数据)格式:员工ID,员工类别,工作年限,月薪(K为单位)       101       a类       8年 ...

  9. Android笔记(八) Android中的布局——相对布局

    RelativeLayout又称为相对布局,也是一种常用的布局形式.和LinearLayout的排列规则不同,RelativeLayout显得更加随意一下,它通常通过相对定位 的方式让控件出现在布局的 ...

  10. 再见 Docker,是时候拥抱下一代容器工具了

    本文首发于:微信公众号「运维之美」,公众号 ID:Hi-Linux. 「运维之美」是一个有情怀.有态度,专注于 Linux 运维相关技术文章分享的公众号.公众号致力于为广大运维工作者分享各类技术文章和 ...