UOJ#467. 【ZJOI2019】线段树 线段树,概率期望
原文链接www.cnblogs.com/zhouzhendong/p/ZJOI2019Day1T2.html
前言
在LOJ交了一下我的代码,发现它比选手机快将近 4 倍。
题解
对于线段树上每一个节点,维护以下信息:
1. 这个点为 1 的概率。
2. 这个点为 0 ,且它有祖先是 1 的概率。
其中,第一种东西在维护了 2. 的情况下十分好求。
第二种东西,只有两类:
1. 一次线段树操作涉及到所有的节点,显然只要乘 0.5 。
2. 某些节点打了标记之后,它的所有子孙都被他影响了。于是我们加个区间修改就好了。
时间复杂度 $O(n\log n)$ 。跑的很快。
好像有一种矩阵乘法的做法,但是它可能会被卡常数。
代码
#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
#define For(i,a,b) for (int i=a;i<=b;i++)
#define Fod(i,b,a) for (int i=b;i>=a;i--)
#define pb(x) push_back(x)
#define mp(x,y) make_pair(x,y)
#define fi first
#define se second
#define outval(x) printf(#x" = %d\n",x)
#define outtag(x) puts("----------------"#x"----------------");
#define outvec(x) printf("vec "#x" = ");For(_i,0,(int)x.size()-1)printf("%d ",x[i]);puts("");
#define outarr(x,L,R) printf(#x"[%d..%d] = ",L,R);For(__i,L,R)printf("%d ",x[i]);puts("");
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
LL read(){
LL f=0,x=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=100005,mod=998244353;
int Pow(int x,int y){
int ans=1;
for (;y;y>>=1,x=(LL)x*x%mod)
if (y&1)
ans=(LL)ans*x%mod;
return ans;
}
void Add(int &x,int y){
if ((x+=y)>=mod)
x-=mod;
}
void Del(int &x,int y){
if ((x-=y)<0)
x+=mod;
}
int n,m,inv2,P=1;
int ans=0;
int p[N<<2];
int p2[N<<2],add[N<<2];
void build(int rt,int L,int R){
p[rt]=p2[rt]=0,add[rt]=1;
if (L==R)
return;
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
build(ls,L,mid);
build(rs,mid+1,R);
}
void pushson(int rt,int v){
add[rt]=(LL)add[rt]*v%mod;
p2[rt]=((LL)v*p2[rt]%mod+(LL)(mod+1-v)*(mod+1-p[rt])%mod)%mod;
}
void pushdown(int rt){
if (add[rt]!=1){
int ls=rt<<1,rs=ls|1;
pushson(ls,add[rt]);
pushson(rs,add[rt]);
add[rt]=1;
}
}
void update(int rt,int L,int R,int xL,int xR){
if (R<xL||L>xR){
Del(ans,p[rt]);
p[rt]=((LL)p2[rt]*inv2+p[rt])%mod;
Add(ans,p[rt]);
p2[rt]=(LL)p2[rt]*inv2%mod;
return;
}
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
if (xL<=L&&R<=xR){
//no pushdown
Del(ans,p[rt]);
p[rt]=(LL)(p[rt]+1)*inv2%mod;
Add(ans,p[rt]);
p2[rt]=(LL)p2[rt]*inv2%mod;
if (L!=R){
pushson(ls,inv2);
pushson(rs,inv2);
}
return;
}
pushdown(rt);
Del(ans,p[rt]);
p[rt]=(LL)p[rt]*inv2%mod;
Add(ans,p[rt]);
p2[rt]=(LL)p2[rt]*inv2%mod;
update(ls,L,mid,xL,xR);
update(rs,mid+1,R,xL,xR);
}
int main(){
n=read(),m=read();
build(1,1,n);
inv2=(mod+1)/2;
while (m--){
int type=read();
if (type==1){
P=(LL)P*2%mod;
int L=read(),R=read();
update(1,1,n,L,R);
}
else {
int val=(LL)ans*P%mod;
printf("%d\n",val);
}
}
return 0;
}
UOJ#467. 【ZJOI2019】线段树 线段树,概率期望的更多相关文章
- jzoj5987. 【WC2019模拟2019.1.4】仙人掌毒题 (树链剖分+概率期望+容斥)
题面 题解 又一道全场切的题目我连题目都没看懂--细节真多-- 先考虑怎么维护仙人掌.在线可以用LCT,或者像我代码里先离线,并按时间求出一棵最小生成树(或者一个森林),然后树链剖分.如果一条边不是生 ...
- 洛谷P5279 [ZJOI2019]麻将(乱搞+概率期望)
题面 传送门 题解 看着题解里一堆巨巨熟练地用着专业用语本萌新表示啥都看不懂啊--顺便\(orz\)余奶奶 我们先考虑给你一堆牌,如何判断能否胡牌 我们按花色大小排序,设\(dp_{0/1,i,j,k ...
- uoj#399. 【CTSC2018】假面(概率期望)
传送门 记\(p_{i,j}\)为\(i\)还剩\(j\)滴血的概率,那么\(i\)最后血量的期望就是\[E_i=\sum_{j=0}^{m_i}j\times p_{i,j}\] 然后\(p\)数组 ...
- UOJ#299. 【CTSC2017】游戏 线段树 概率期望 矩阵
原文链接www.cnblogs.com/zhouzhendong/p/UOJ299.html 前言 不会概率题的菜鸡博主做了一道概率题. 写完发现运行效率榜上的人都没有用心卡常数——矩阵怎么可以用数组 ...
- [UOJ#334][NOIP2017]列队 平衡树/线段树/树状数组
题目链接 题意不说了,一辈子也忘不掉 解法1.平衡树 这题就是平衡树裸题,每一行开一棵维护前 \(m-1\) 个,最后一列单独维护,因为很多人没有用到,所以平衡树每个节点是一个区间(pair),分裂时 ...
- HDU 5877 dfs+ 线段树(或+树状树组)
1.HDU 5877 Weak Pair 2.总结:有多种做法,这里写了dfs+线段树(或+树状树组),还可用主席树或平衡树,但还不会这两个 3.思路:利用dfs遍历子节点,同时对于每个子节点au, ...
- 学习笔记--函数式线段树(主席树)(动态维护第K极值(树状数组套主席树))
函数式线段树..资瓷 区间第K极值查询 似乎不过似乎划分树的效率更优于它,但是如果主席树套树状数组后,可以处理动态的第K极值.即资瓷插入删除,划分树则不同- 那么原理也比较易懂: 建造一棵线段树(权值 ...
- BZOJ_3196_二逼平衡树_(树套树,线段树+Treap)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3196 可以处理区间问题的平衡树. 3196: Tyvj 1730 二逼平衡树 Time Lim ...
- [BZOJ 1901] Dynamic Rankings 【树状数组套线段树 || 线段树套线段树】
题目链接:BZOJ - 1901 题目分析 树状数组套线段树或线段树套线段树都可以解决这道题. 第一层是区间,第二层是权值. 空间复杂度和时间复杂度均为 O(n log^2 n). 线段树比树状数组麻 ...
- BZOJ 3110 ZJOI 2013 K大数查询 树套树(权值线段树套区间线段树)
题目大意:有一些位置.这些位置上能够放若干个数字. 如今有两种操作. 1.在区间l到r上加入一个数字x 2.求出l到r上的第k大的数字是什么 思路:这样的题一看就是树套树,关键是怎么套,怎么写.(话说 ...
随机推荐
- 什么是RAID(磁盘阵列)
RAID全称Redundant Array of Independent Disk,即独立冗余磁盘阵列.RAID技术由加州大学伯克利分校1987年提出,最初是为了组合小的廉价磁盘来代替大的昂贵磁盘,同 ...
- Asp.netCore 的Startup 不继承接口
有一个问题: Asp.netCore 的Startup 要实现 Config 和ConfigServie 方法, 为什么不接口约束呢. 进入源码: // // 摘要: // /// Specify t ...
- Python Web 程序使用 uWSGI 部署
Python Web 程序使用 uWSGI 部署 WSGI是什么? WSGI,全称 Web Server Gateway Interface,或者 Python Web Server Gateway ...
- 【前端开发】nrm切换淘宝镜像&nvm管理node版本及切换
说明:nrm是切换淘宝镜像用的,nvm是node的版本切换用的(可在自己电脑安装多个版本node,便于不同项目的支持) 一.nrm的安装及常见命令: 安装nrmnpm install -g nrm 查 ...
- linux 命令 wc
语法:wc [选项] 文件… 说明:该命令统计给定文件中的字节数.字数.行数.如果没有给出文件名,则从标准输入读取.wc同时也给出所有指定文件的总统计数.字是由空格字符区分开的最大字符串. (1) 统 ...
- Android笔记(二十四) Android中的SeekBar(拖动条)
拖动条和进度条非常相似,只是进度条采用颜色填充来表明进度完成的程度,而拖动条则通过滑块的位置来标识数值——而且拖动条允许用户拖动滑块来改变值,因此拖动条通常用于对系统的某种数值进行调节,比如调节音量等 ...
- SQL注入是什么?如何防止?
SQL注入是什么?如何防止? SQL注入是一种注入攻击,可以执行恶意SQL语句.下面本篇文章就来带大家了解一下SQL注入,简单介绍一下防止SQL注入攻击的方法,希望对大家有所帮助. 什么是SQL注入? ...
- PAT基础级-钻石段位样卷2-7-2 吃鱼还是吃肉 (10 分)
国家给出了 8 岁男宝宝的标准身高为 130 厘米.标准体重为 27 公斤:8 岁女宝宝的标准身高为 129 厘米.标准体重为 25 公斤. 现在你要根据小宝宝的身高体重,给出补充营养的建议. 输 ...
- ElasticSearch 连载二 中文分词
ElasticSearch 连载二 中文分词 上一章ElasticSearch 连载一 基础入门 对Elastic的概念.安装以及基础操作进行了介绍. 那是不是有童鞋会有以下几个问题呢? 什么是中文分 ...
- Linux用ctrl + r 查找以前(历史)输入的命令
在Linux系统下一直用上下键查找以前输入的命令,这个找刚输入不久的命令还是很方便的,但是比较久远的命令,用上下键效率就不高了.那个history命令也是个花架子,虽然功能多,但不好用,网上找了下,发 ...