【转载】softmax的log似然代价函数(求导过程)
全文转载自:softmax的log似然代价函数(公式求导)
在人工神经网络(ANN)中,Softmax通常被用作输出层的激活函数。这不仅是因为它的效果好,而且因为它使得ANN的输出值更易于理解。同时,softmax配合log似然代价函数,其训练效果也要比采用二次代价函数的方式好。
1. softmax函数及其求导
softmax的函数公式如下:
其中,表示第L层(通常是最后一层)第j个神经元的输入,
表示第L层第j个神经元的输出,
表示自然常数。注意看,
表示了第L层所有神经元的输入之和。
softmax函数最明显的特点在于:它把每个神经元的输入占当前层所有神经元输入之和的比值,当作该神经元的输出。这使得输出更容易被解释:神经元的输出值越大,则该神经元对应的类别是真实类别的可能性更高。
另外,softmax不仅把神经元输出构造成概率分布,而且还起到了归一化的作用,适用于很多需要进行归一化处理的分类问题。
由于softmax在ANN算法中的求导结果比较特别,分为两种情况。希望能帮助到正在学习此类算法的朋友们。求导过程如下所示:
2. softmax配合log似然代价函数训练ANN
在上一篇博文“交叉熵代价函数”中讲到,二次代价函数在训练ANN时可能会导致训练速度变慢的问题。那就是,初始的输出值离真实值越远,训练速度就越慢。这个问题可以通过采用交叉熵代价函数来解决。其实,这个问题也可以采用另外一种方法解决,那就是采用softmax激活函数,并采用log似然代价函数(log-likelihood cost function)来解决。
log似然代价函数的公式为:
其中,表示第k个神经元的输出值,
表示第k个神经元对应的真实值,取值为0或1。
我们来简单理解一下这个代价函数的含义。在ANN中输入一个样本,那么只有一个神经元对应了该样本的正确类别;若这个神经元输出的概率值越高,则按照以上的代价函数公式,其产生的代价就越小;反之,则产生的代价就越高。
为了检验softmax和这个代价函数也可以解决上述所说的训练速度变慢问题,接下来的重点就是推导ANN的权重w和偏置b的梯度公式。以偏置b为例:
同理可得:
从上述梯度公式可知,softmax函数配合log似然代价函数可以很好地训练ANN,不存在学习速度变慢的问题。
【转载】softmax的log似然代价函数(求导过程)的更多相关文章
- Deep Learning基础--Softmax求导过程
一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...
- PyTorch学习笔记——softmax和log_softmax的区别、CrossEntropyLoss() 与 NLLLoss() 的区别、log似然代价函数
1.softmax 函数 Softmax(x) 也是一个 non-linearity, 但它的特殊之处在于它通常是网络中一次操作. 这是因为它接受了一个实数向量并返回一个概率分布.其定义如下. 定义 ...
- softmax 损失函数求导过程
前言:softmax中的求导包含矩阵与向量的求导关系,记录的目的是为了回顾. 下图为利用softmax对样本进行k分类的问题,其损失函数的表达式为结构风险,第二项是模型结构的正则化项. 首先,每个qu ...
- 关于 Softmax 回归的反向传播求导数过程
对于 \(Softmax\) 回归的正向传播非常简单,就是对于一个输入 \(X\) 对每一个输入标量 \(x_i\) 进行加权求和得到 \(Z\) 然后对其做概率归一化. Softmax 示意图 下面 ...
- softmax分类器+cross entropy损失函数的求导
softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解 ...
- 【机器学习基础】对 softmax 和 cross-entropy 求导
目录 符号定义 对 softmax 求导 对 cross-entropy 求导 对 softmax 和 cross-entropy 一起求导 References 在论文中看到对 softmax 和 ...
- 关于 RNN 循环神经网络的反向传播求导
关于 RNN 循环神经网络的反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证. RNN 神经网络架构 一个 ...
- Pytorch Autograd (自动求导机制)
Pytorch Autograd (自动求导机制) Introduce Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心. 本文通过logisti ...
- PAT-乙级-1010. 一元多项式求导 (25)
1010. 一元多项式求导 (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 设计函数求一元多项式的导数.(注:xn(n为整数)的一 ...
随机推荐
- vue-cli的项目中关于axios的全局配置,结合element UI,配置全局loading,header中做token传输
在src目录中建立plugins文件夹,在文件夹内建立axios.js文件 "use strict"; import Vue from 'vue'; import axios fr ...
- 第二章 kali安装
@kali安装 本文以虚拟机进行安装(注意:虚拟机安装不等同于物理机安装,在虚拟机安装成功不等于一定能在物理机,U盘安装成功) 下载kali镜像 官方地址:https://www.kali.org/d ...
- 安装keystone
在控制节点上执行 controllerHost='controller' MYSQL_PASSWD='m4r!adbOP' RABBIT_PASSWD='0penstackRMQ' ADMIN_PAS ...
- Summary of OAuth 2.0
Summary of OAuth 2.0 1 Problems: This pattern of applications obtaining user passwords obviously has ...
- 【LOJ】#3086. 「GXOI / GZOI2019」逼死强迫症
LOJ#3086. 「GXOI / GZOI2019」逼死强迫症 这个就是设状态为\(S,j\)表示轮廓线为\(S\),然后用的1×1个数为j 列出矩阵转移 这样会算重两个边相邻的,只要算出斐波那契数 ...
- springboot2.0整合freemarker快速入门
目录 1. 快速入门 1.1 创建工程pom.xml文件如下 1.2 编辑application.yml 1.3 创建模型类 1.4 创建模板 1.5 创建controller 1.6 测试 2. F ...
- 如何利用swoole搭建一個簡易聊天室
<?php class Chat { const HOST = '0.0.0.0';//ip地址 0.0.0.0代表接受所有ip的访问 const PART = 82;//端口号 private ...
- 解决github pages和github .md文件图片不显示
博客园上传的图片,在github上无法显示. 在github项目下建立img文件夹,放上图片 两种方式 项目绝对路径 https://raw.githubusercontent.com/用户名/项目名 ...
- 12-Perl 时间日期
1.Perl 时间日期本章节介绍 Perl 语言对时间日期的处理.Perl中处理时间的函数有如下几种: time() 函数:返回从1970年1月1日起累计的秒数 localtime() 函数:获取本地 ...
- JS基础_嵌套的for循环
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...