problem1 link

如果两个循环之内可以跳完,那么我们只要让这些步数之内的数字组成两个数字$p,q,p\leq q$,使得$p,q,x$组成三角形即可($p+q\geq x,p+x\geq q$)。

否则,若$x$是所有数字之和的很多倍,则一开始是一直直着向前跳$m$次,剩下$r=x-m\sum_{i=0}^{n-1}t_{i}$,然后找到一个前缀和大于等于$r$即可。

problem2 link

对于某个节点$u$,假如最后一定选择该节点,那么对于节点$p$,若选它,那么$p$到$u$路径上的点都必须选,这样就成了一个最大权闭合图问题。可以用最小割来计算。

problem3 link

对于不同的素数,可以分开考虑。

对于某一个素数p:用$min[i],max[i]$计算$n$个数字中每个数字最少最多含有多少个$p$。然后第$x$个数字含有的$p$要么取$min[x]$,要么取$max[x]$,因此可用2sat解决。

code for problem1

#include <algorithm>
#include <vector> class PeriodicJumping {
public:
int minimalTime(int x, const std::vector<int> &jumps) {
std::vector<int> copys = jumps;
int n = static_cast<int>(copys.size());
for (int i = 0; i < n; ++i) {
copys.emplace_back(copys[i]);
}
n *= 2;
if (x < 0) {
x *= -1;
}
if (x == 0) {
return 0;
}
long long s = 0;
int max_jump = 0;
for (int i = 0; i < n; ++i) {
max_jump = std::max(max_jump, copys[i]);
s += copys[i];
long long min = std::max(0ll, max_jump - (s - max_jump));
if (min <= x && x <= s) return i + 1;
}
int result = static_cast<int>(x / s * n);
int remain = x % s;
for (int i = 0; i < n && remain > 0; ++i) {
remain -= copys[i];
++result;
}
return result;
}
};

code for problem2

#include <limits>
#include <memory>
#include <unordered_map>
#include <vector> template <typename FlowType>
class MaxFlowSolver {
static constexpr FlowType kMaxFlow = std::numeric_limits<FlowType>::max();
static constexpr FlowType kZeroFlow = static_cast<FlowType>(0);
struct node {
int v;
int next;
FlowType cap;
}; public:
int VertexNumber() const { return used_index_; } FlowType MaxFlow(int source, int sink) {
source = GetIndex(source);
sink = GetIndex(sink); int n = VertexNumber();
std::vector<int> pre(n);
std::vector<int> cur(n);
std::vector<int> num(n);
std::vector<int> h(n);
for (int i = 0; i < n; ++i) {
cur[i] = head_[i];
num[i] = 0;
h[i] = 0;
}
int u = source;
FlowType result = 0;
while (h[u] < n) {
if (u == sink) {
FlowType min_cap = kMaxFlow;
int v = -1;
for (int i = source; i != sink; i = edges_[cur[i]].v) {
int k = cur[i];
if (edges_[k].cap < min_cap) {
min_cap = edges_[k].cap;
v = i;
}
}
result += min_cap;
u = v;
for (int i = source; i != sink; i = edges_[cur[i]].v) {
int k = cur[i];
edges_[k].cap -= min_cap;
edges_[k ^ 1].cap += min_cap;
}
}
int index = -1;
for (int i = cur[u]; i != -1; i = edges_[i].next) {
if (edges_[i].cap > 0 && h[u] == h[edges_[i].v] + 1) {
index = i;
break;
}
}
if (index != -1) {
cur[u] = index;
pre[edges_[index].v] = u;
u = edges_[index].v;
} else {
if (--num[h[u]] == 0) {
break;
}
int k = n;
cur[u] = head_[u];
for (int i = head_[u]; i != -1; i = edges_[i].next) {
if (edges_[i].cap > 0 && h[edges_[i].v] < k) {
k = h[edges_[i].v];
}
}
if (k + 1 < n) {
num[k + 1] += 1;
}
h[u] = k + 1;
if (u != source) {
u = pre[u];
}
}
}
return result;
} MaxFlowSolver() = default; void Clear() {
edges_.clear();
head_.clear();
vertex_indexer_.clear();
used_index_ = 0;
} void InsertEdge(int from, int to, FlowType cap) {
from = GetIndex(from);
to = GetIndex(to);
AddEdge(from, to, cap);
AddEdge(to, from, kZeroFlow);
} private:
int GetIndex(int idx) {
auto iter = vertex_indexer_.find(idx);
if (iter != vertex_indexer_.end()) {
return iter->second;
}
int map_idx = used_index_++;
head_.push_back(-1);
return vertex_indexer_[idx] = map_idx;
} void AddEdge(int from, int to, FlowType cap) {
node p;
p.v = to;
p.cap = cap;
p.next = head_[from];
head_[from] = static_cast<int>(edges_.size());
edges_.emplace_back(p);
} std::vector<node> edges_;
std::vector<int> head_; std::unordered_map<int, int> vertex_indexer_;
int used_index_ = 0;
}; class DoubleTree {
public:
int maximalScore(const std::vector<int> &a, const std::vector<int> &b,
const std::vector<int> &c, const std::vector<int> &d,
const std::vector<int> &score) {
int n = static_cast<int>(a.size() + 1);
std::vector<std::vector<int>> g1(n);
std::vector<std::vector<int>> g2(n);
for (int i = 0; i < n - 1; ++i) {
g1[a[i]].push_back(b[i]);
g1[b[i]].push_back(a[i]);
g2[c[i]].push_back(d[i]);
g2[d[i]].push_back(c[i]);
} constexpr int kInfiniteFlow = 1000000;
std::unique_ptr<MaxFlowSolver<int>> solver(new MaxFlowSolver<int>());
int result = 0;
for (int root = 0; root < n; ++root) {
std::vector<int> father1(n);
std::vector<int> father2(n);
Dfs(root, -1, father1, g1);
Dfs(root, -1, father2, g2);
solver->Clear();
int source = -1;
int sink = -2;
int s = 0;
for (int i = 0; i < n; ++i) {
if (score[i] > 0) {
s += score[i];
solver->InsertEdge(source, i, score[i]);
} else {
solver->InsertEdge(i, sink, -score[i]);
}
if (i != root) {
solver->InsertEdge(i, father1[i], kInfiniteFlow);
solver->InsertEdge(i, father2[i], kInfiniteFlow);
}
}
result = std::max(result, s - solver->MaxFlow(source, sink));
}
return result;
} private:
void Dfs(int u, int pre, std::vector<int> &father,
const std::vector<std::vector<int>> &g) {
father[u] = pre;
for (auto e : g[u]) {
if (e != pre) {
Dfs(e, u, father, g);
}
}
}
};

code for problem3

#include <algorithm>
#include <memory>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector> class StronglyConnectedComponentSolver {
public:
StronglyConnectedComponentSolver() = default; void Initialize(int n) { edges_.resize(n); } std::vector<int> Solve() {
total_ = static_cast<int>(edges_.size());
if (total_ == 0) {
return {};
}
visited_.resize(total_, false);
low_indices_.resize(total_, 0);
dfs_indices_.resize(total_, 0);
connected_component_indices_.resize(total_, 0);
for (int i = 0; i < total_; ++i) {
if (0 == dfs_indices_[i]) {
Dfs(i);
}
}
return connected_component_indices_;
} int VertexNumber() const { return static_cast<int>(edges_.size()); } inline void AddEdge(int from, int to) { edges_[from].push_back(to); } const std::vector<int> &Tos(int u) const { return edges_[u]; } private:
void Dfs(const int u) {
low_indices_[u] = dfs_indices_[u] = ++index_;
stack_.push(u);
visited_[u] = true;
for (auto v : edges_[u]) {
if (0 == dfs_indices_[v]) {
Dfs(v);
low_indices_[u] = std::min(low_indices_[u], low_indices_[v]);
} else if (visited_[v]) {
low_indices_[u] = std::min(low_indices_[u], dfs_indices_[v]);
}
}
if (dfs_indices_[u] == low_indices_[u]) {
int v = 0;
do {
v = stack_.top();
stack_.pop();
visited_[v] = false;
connected_component_indices_[v] = connected_component_index_;
} while (u != v);
++connected_component_index_;
}
} std::vector<std::vector<int>> edges_;
int total_ = 0;
std::vector<bool> visited_;
std::vector<int> low_indices_;
std::vector<int> dfs_indices_;
std::stack<int> stack_;
int index_ = 0;
int connected_component_index_ = 0;
std::vector<int> connected_component_indices_;
}; class TwoSatisfiabilitySolver {
public:
void Initialize(int total_vertex_number) {
scc_solver_.Initialize(total_vertex_number);
} // If idx1 is type1, then idx2 must be type2.
void AddConstraint(int idx1, bool type1, int idx2, bool type2) {
int from = idx1 * 2 + (type1 ? 1 : 0);
int to = idx2 * 2 + (type2 ? 1 : 0);
scc_solver_.AddEdge(from, to);
} void AddConflict(int idx1, bool type1, int idx2, bool type2) {
AddConstraint(idx1, type1, idx2, !type2);
AddConstraint(idx2, type2, idx1, !type1);
} void AddLead(int idx1, bool type1, int idx2, bool type2) {
AddConstraint(idx1, type1, idx2, type2);
AddConstraint(idx2, !type2, idx1, !type1);
} // The idx must not be type
void SetFalse(int idx, bool type) { SetTrue(idx, !type); } // The idx must be type
void SetTrue(int idx, bool type) { AddConstraint(idx, !type, idx, type); } bool ExistSolution() {
if (scc_indices_.empty()) {
scc_indices_ = scc_solver_.Solve();
total_scc_number_ =
*std::max_element(scc_indices_.begin(), scc_indices_.end()) + 1;
}
for (int i = 0; i < scc_solver_.VertexNumber() / 2; ++i) {
if (scc_indices_[i * 2] == scc_indices_[i * 2 + 1]) {
return false;
}
}
return true;
} std::vector<bool> GetOneSolution() {
if (!ExistSolution()) {
return {};
}
BuildNewGraph();
TopSort();
int total = scc_solver_.VertexNumber();
std::vector<bool> result(total / 2);
for (int e = 0; e < total / 2; ++e) {
if (last_color_[scc_indices_[e * 2]] == 0) {
result[e] = false;
} else {
result[e] = true;
}
}
return std::move(result);
} private:
void BuildNewGraph() {
new_edges_.resize(total_scc_number_);
new_graph_node_in_degree_.resize(total_scc_number_, 0);
int total = scc_solver_.VertexNumber();
for (int i = 0; i < total; ++i) {
int scc0 = scc_indices_[i];
for (auto e : scc_solver_.Tos(i)) {
int scc1 = scc_indices_[e];
if (scc0 != scc1 &&
new_edges_[scc1].find(scc0) == new_edges_[scc1].end()) {
new_edges_[scc1].insert(scc0);
++new_graph_node_in_degree_[scc0];
}
}
}
} void TopSort() {
std::vector<int> conflict(total_scc_number_);
int total = scc_solver_.VertexNumber() / 2;
for (int i = 0; i < total; ++i) {
conflict[scc_indices_[i * 2]] = scc_indices_[i * 2 + 1];
conflict[scc_indices_[i * 2 + 1]] = scc_indices_[i * 2];
}
last_color_.resize(total_scc_number_, -1);
std::stack<int> st;
for (int i = 0; i < total_scc_number_; ++i) {
if (0 == new_graph_node_in_degree_[i]) {
st.push(i);
}
}
while (!st.empty()) {
int u = st.top();
st.pop();
if (last_color_[u] == -1) {
last_color_[u] = 0;
last_color_[conflict[u]] = 1;
}
for (auto e : new_edges_[u]) {
int cur = --new_graph_node_in_degree_[e];
if (cur == 0) {
st.push(e);
}
}
}
} std::vector<int> scc_indices_;
int total_scc_number_ = 0;
std::vector<std::unordered_set<int>> new_edges_;
std::vector<int> new_graph_node_in_degree_;
std::vector<int> last_color_; StronglyConnectedComponentSolver scc_solver_;
}; class GCDLCM {
public:
std::string possible(int n, const std::string &type,
const std::vector<int> &A, const std::vector<int> &B,
const std::vector<int> &C) {
std::unordered_set<int> primes;
for (auto c : C) {
for (int i = 2; i * i <= c; ++i) {
if (c % i == 0) {
primes.insert(i);
while (c % i == 0) {
c /= i;
}
}
}
if (c > 1) {
primes.insert(c);
}
}
int m = static_cast<int>(C.size());
auto Check = [&](int p) {
std::vector<int> min(n, 0);
std::vector<int> max(n, 1000);
std::vector<int> number(m, 0); for (int i = 0; i < m; ++i) {
int t = C[i];
while (t % p == 0) {
++number[i];
t /= p;
}
if (type[i] == 'G') {
min[A[i]] = std::max(min[A[i]], number[i]);
min[B[i]] = std::max(min[B[i]], number[i]);
} else {
max[A[i]] = std::min(max[A[i]], number[i]);
max[B[i]] = std::min(max[B[i]], number[i]);
}
}
for (int i = 0; i < n; ++i) {
if (min[i] > max[i]) {
return false;
}
}
std::unique_ptr<TwoSatisfiabilitySolver> solver(
new TwoSatisfiabilitySolver());
solver->Initialize(n * 2);
for (int i = 0; i < m; i++) {
int u = A[i];
int v = B[i];
if (type[i] == 'G') {
bool x = min[u] > number[i];
bool y = min[v] > number[i];
if (x && y) {
return false;
} else if (x) {
if (min[v] != max[v]) {
solver->SetTrue(v, false);
}
} else if (y) {
if (min[u] != max[u]) {
solver->SetTrue(u, false);
}
} else {
if (min[v] != max[v] && min[u] != max[u]) {
solver->AddConstraint(v, true, u, false);
solver->AddConstraint(u, true, v, false);
}
}
} else {
bool x = max[u] < number[i];
bool y = max[v] < number[i];
if (x && y) {
return false;
} else if (x) {
if (min[v] != max[v]) {
solver->SetTrue(v, true);
}
} else if (y) {
if (min[u] != max[u]) {
solver->SetTrue(u, true);
}
} else {
if (min[v] != max[v] && min[u] != max[u]) {
solver->AddConstraint(v, false, u, true);
solver->AddConstraint(u, false, v, true);
}
}
}
}
return solver->ExistSolution();
};
for (auto p : primes) {
if (!Check(p)) {
return "Solution does not exist";
}
}
return "Solution exists";
}
};

topcoder srm 633 div1的更多相关文章

  1. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  2. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  3. [topcoder]SRM 633 DIV 2

    第一题,http://community.topcoder.com/stat?c=problem_statement&pm=13462&rd=16076 模拟就可以了. #includ ...

  4. topcoder srm 714 div1

    problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...

  5. topcoder srm 738 div1 FindThePerfectTriangle(枚举)

    Problem Statement      You are given the ints perimeter and area. Your task is to find a triangle wi ...

  6. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  7. Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串

    Problem Statement      The Happy Letter game is played as follows: At the beginning, several players ...

  8. TopCoder SRM 633 Div.2 500 Jumping

    题意:给一个点(x,y),给一些步长delta1,delta2...deltaN,问从(0,0)严格按照步长走完N步后能否正好到达(x,y)点. 解法:其实就是判断这些线段和(0,0)-(x,y)这条 ...

  9. Topcoder SRM 584 DIV1 600

    思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...

随机推荐

  1. REST is not the Best for Micro-Services GRPC and Docker makes a compelling case

    原文:https://hackernoon.com/rest-in-peace-grpc-for-micro-service-and-grpc-for-the-web-a-how-to-908cc05 ...

  2. Java锁--Semaphore

    转载请注明出处:http://www.cnblogs.com/skywang12345/p/3534050.html Semaphore简介 Semaphore是一个计数信号量,它的本质是一个&quo ...

  3. pycharm连接不上mysql数据库的解决办法

    问题描述 环境:ubuntu18.04,mysql5.7 今天在ubuntu下使用pycharm连接mysql,发现连接不上 这不是缺少驱动吗?下载之! 下好之后点进去 连接 点击test conne ...

  4. text-transform

    text-transform 语法: text-transform:none | capitalize | uppercase | lowercase |  默认值:none 适用于:所有元素 继承性 ...

  5. jq 字符串转数组

    一般我们在添加关键词时  会添加几组关键词     上传时怎么取值呢 取值时用以下格式 就能取到值 var FTag = "" //AAA,BBB if (FTag1 != &qu ...

  6. 38 | 都说InnoDB好,那还要不要使用Memory引擎?

    我在上一篇文章末尾留给你的问题是:两个 group by 语句都用了 order by null,为什么使用内存临时表得到的语句结果里,0 这个值在最后一行:而使用磁盘临时表得到的结果里,0 这个值在 ...

  7. java前后分离了 controller接口GET和POST

    通用 @RestController GET @RequestMapping("userbase/{userId}") public User selectById(@PathVa ...

  8. 题解 CF375D 【Tree and Queries】

    首先,子树上的查询问题可以通过$DFS$序转为序列问题 再一看,没有修改,可以离线,这不就是莫队吗? 我们用$sum_i$表示出现次数$\geq i$的个数 用$val_i$表示第$i$种颜色的出现次 ...

  9. 1823:【00NOIP提高组】方格取数

    #include<bits/stdc++.h> using namespace std; ][]; ][][][]; inline int max(int x,int y) { retur ...

  10. 下面的代码在Python2中的输出是什么?解释你的答案

    python2 def div1(x,y): print "%s/%s = %s" % (x, y, x/y) def div2(x,y): print "%s//%s ...