problem1 link

如果两个循环之内可以跳完,那么我们只要让这些步数之内的数字组成两个数字$p,q,p\leq q$,使得$p,q,x$组成三角形即可($p+q\geq x,p+x\geq q$)。

否则,若$x$是所有数字之和的很多倍,则一开始是一直直着向前跳$m$次,剩下$r=x-m\sum_{i=0}^{n-1}t_{i}$,然后找到一个前缀和大于等于$r$即可。

problem2 link

对于某个节点$u$,假如最后一定选择该节点,那么对于节点$p$,若选它,那么$p$到$u$路径上的点都必须选,这样就成了一个最大权闭合图问题。可以用最小割来计算。

problem3 link

对于不同的素数,可以分开考虑。

对于某一个素数p:用$min[i],max[i]$计算$n$个数字中每个数字最少最多含有多少个$p$。然后第$x$个数字含有的$p$要么取$min[x]$,要么取$max[x]$,因此可用2sat解决。

code for problem1

#include <algorithm>
#include <vector> class PeriodicJumping {
public:
int minimalTime(int x, const std::vector<int> &jumps) {
std::vector<int> copys = jumps;
int n = static_cast<int>(copys.size());
for (int i = 0; i < n; ++i) {
copys.emplace_back(copys[i]);
}
n *= 2;
if (x < 0) {
x *= -1;
}
if (x == 0) {
return 0;
}
long long s = 0;
int max_jump = 0;
for (int i = 0; i < n; ++i) {
max_jump = std::max(max_jump, copys[i]);
s += copys[i];
long long min = std::max(0ll, max_jump - (s - max_jump));
if (min <= x && x <= s) return i + 1;
}
int result = static_cast<int>(x / s * n);
int remain = x % s;
for (int i = 0; i < n && remain > 0; ++i) {
remain -= copys[i];
++result;
}
return result;
}
};

code for problem2

#include <limits>
#include <memory>
#include <unordered_map>
#include <vector> template <typename FlowType>
class MaxFlowSolver {
static constexpr FlowType kMaxFlow = std::numeric_limits<FlowType>::max();
static constexpr FlowType kZeroFlow = static_cast<FlowType>(0);
struct node {
int v;
int next;
FlowType cap;
}; public:
int VertexNumber() const { return used_index_; } FlowType MaxFlow(int source, int sink) {
source = GetIndex(source);
sink = GetIndex(sink); int n = VertexNumber();
std::vector<int> pre(n);
std::vector<int> cur(n);
std::vector<int> num(n);
std::vector<int> h(n);
for (int i = 0; i < n; ++i) {
cur[i] = head_[i];
num[i] = 0;
h[i] = 0;
}
int u = source;
FlowType result = 0;
while (h[u] < n) {
if (u == sink) {
FlowType min_cap = kMaxFlow;
int v = -1;
for (int i = source; i != sink; i = edges_[cur[i]].v) {
int k = cur[i];
if (edges_[k].cap < min_cap) {
min_cap = edges_[k].cap;
v = i;
}
}
result += min_cap;
u = v;
for (int i = source; i != sink; i = edges_[cur[i]].v) {
int k = cur[i];
edges_[k].cap -= min_cap;
edges_[k ^ 1].cap += min_cap;
}
}
int index = -1;
for (int i = cur[u]; i != -1; i = edges_[i].next) {
if (edges_[i].cap > 0 && h[u] == h[edges_[i].v] + 1) {
index = i;
break;
}
}
if (index != -1) {
cur[u] = index;
pre[edges_[index].v] = u;
u = edges_[index].v;
} else {
if (--num[h[u]] == 0) {
break;
}
int k = n;
cur[u] = head_[u];
for (int i = head_[u]; i != -1; i = edges_[i].next) {
if (edges_[i].cap > 0 && h[edges_[i].v] < k) {
k = h[edges_[i].v];
}
}
if (k + 1 < n) {
num[k + 1] += 1;
}
h[u] = k + 1;
if (u != source) {
u = pre[u];
}
}
}
return result;
} MaxFlowSolver() = default; void Clear() {
edges_.clear();
head_.clear();
vertex_indexer_.clear();
used_index_ = 0;
} void InsertEdge(int from, int to, FlowType cap) {
from = GetIndex(from);
to = GetIndex(to);
AddEdge(from, to, cap);
AddEdge(to, from, kZeroFlow);
} private:
int GetIndex(int idx) {
auto iter = vertex_indexer_.find(idx);
if (iter != vertex_indexer_.end()) {
return iter->second;
}
int map_idx = used_index_++;
head_.push_back(-1);
return vertex_indexer_[idx] = map_idx;
} void AddEdge(int from, int to, FlowType cap) {
node p;
p.v = to;
p.cap = cap;
p.next = head_[from];
head_[from] = static_cast<int>(edges_.size());
edges_.emplace_back(p);
} std::vector<node> edges_;
std::vector<int> head_; std::unordered_map<int, int> vertex_indexer_;
int used_index_ = 0;
}; class DoubleTree {
public:
int maximalScore(const std::vector<int> &a, const std::vector<int> &b,
const std::vector<int> &c, const std::vector<int> &d,
const std::vector<int> &score) {
int n = static_cast<int>(a.size() + 1);
std::vector<std::vector<int>> g1(n);
std::vector<std::vector<int>> g2(n);
for (int i = 0; i < n - 1; ++i) {
g1[a[i]].push_back(b[i]);
g1[b[i]].push_back(a[i]);
g2[c[i]].push_back(d[i]);
g2[d[i]].push_back(c[i]);
} constexpr int kInfiniteFlow = 1000000;
std::unique_ptr<MaxFlowSolver<int>> solver(new MaxFlowSolver<int>());
int result = 0;
for (int root = 0; root < n; ++root) {
std::vector<int> father1(n);
std::vector<int> father2(n);
Dfs(root, -1, father1, g1);
Dfs(root, -1, father2, g2);
solver->Clear();
int source = -1;
int sink = -2;
int s = 0;
for (int i = 0; i < n; ++i) {
if (score[i] > 0) {
s += score[i];
solver->InsertEdge(source, i, score[i]);
} else {
solver->InsertEdge(i, sink, -score[i]);
}
if (i != root) {
solver->InsertEdge(i, father1[i], kInfiniteFlow);
solver->InsertEdge(i, father2[i], kInfiniteFlow);
}
}
result = std::max(result, s - solver->MaxFlow(source, sink));
}
return result;
} private:
void Dfs(int u, int pre, std::vector<int> &father,
const std::vector<std::vector<int>> &g) {
father[u] = pre;
for (auto e : g[u]) {
if (e != pre) {
Dfs(e, u, father, g);
}
}
}
};

code for problem3

#include <algorithm>
#include <memory>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector> class StronglyConnectedComponentSolver {
public:
StronglyConnectedComponentSolver() = default; void Initialize(int n) { edges_.resize(n); } std::vector<int> Solve() {
total_ = static_cast<int>(edges_.size());
if (total_ == 0) {
return {};
}
visited_.resize(total_, false);
low_indices_.resize(total_, 0);
dfs_indices_.resize(total_, 0);
connected_component_indices_.resize(total_, 0);
for (int i = 0; i < total_; ++i) {
if (0 == dfs_indices_[i]) {
Dfs(i);
}
}
return connected_component_indices_;
} int VertexNumber() const { return static_cast<int>(edges_.size()); } inline void AddEdge(int from, int to) { edges_[from].push_back(to); } const std::vector<int> &Tos(int u) const { return edges_[u]; } private:
void Dfs(const int u) {
low_indices_[u] = dfs_indices_[u] = ++index_;
stack_.push(u);
visited_[u] = true;
for (auto v : edges_[u]) {
if (0 == dfs_indices_[v]) {
Dfs(v);
low_indices_[u] = std::min(low_indices_[u], low_indices_[v]);
} else if (visited_[v]) {
low_indices_[u] = std::min(low_indices_[u], dfs_indices_[v]);
}
}
if (dfs_indices_[u] == low_indices_[u]) {
int v = 0;
do {
v = stack_.top();
stack_.pop();
visited_[v] = false;
connected_component_indices_[v] = connected_component_index_;
} while (u != v);
++connected_component_index_;
}
} std::vector<std::vector<int>> edges_;
int total_ = 0;
std::vector<bool> visited_;
std::vector<int> low_indices_;
std::vector<int> dfs_indices_;
std::stack<int> stack_;
int index_ = 0;
int connected_component_index_ = 0;
std::vector<int> connected_component_indices_;
}; class TwoSatisfiabilitySolver {
public:
void Initialize(int total_vertex_number) {
scc_solver_.Initialize(total_vertex_number);
} // If idx1 is type1, then idx2 must be type2.
void AddConstraint(int idx1, bool type1, int idx2, bool type2) {
int from = idx1 * 2 + (type1 ? 1 : 0);
int to = idx2 * 2 + (type2 ? 1 : 0);
scc_solver_.AddEdge(from, to);
} void AddConflict(int idx1, bool type1, int idx2, bool type2) {
AddConstraint(idx1, type1, idx2, !type2);
AddConstraint(idx2, type2, idx1, !type1);
} void AddLead(int idx1, bool type1, int idx2, bool type2) {
AddConstraint(idx1, type1, idx2, type2);
AddConstraint(idx2, !type2, idx1, !type1);
} // The idx must not be type
void SetFalse(int idx, bool type) { SetTrue(idx, !type); } // The idx must be type
void SetTrue(int idx, bool type) { AddConstraint(idx, !type, idx, type); } bool ExistSolution() {
if (scc_indices_.empty()) {
scc_indices_ = scc_solver_.Solve();
total_scc_number_ =
*std::max_element(scc_indices_.begin(), scc_indices_.end()) + 1;
}
for (int i = 0; i < scc_solver_.VertexNumber() / 2; ++i) {
if (scc_indices_[i * 2] == scc_indices_[i * 2 + 1]) {
return false;
}
}
return true;
} std::vector<bool> GetOneSolution() {
if (!ExistSolution()) {
return {};
}
BuildNewGraph();
TopSort();
int total = scc_solver_.VertexNumber();
std::vector<bool> result(total / 2);
for (int e = 0; e < total / 2; ++e) {
if (last_color_[scc_indices_[e * 2]] == 0) {
result[e] = false;
} else {
result[e] = true;
}
}
return std::move(result);
} private:
void BuildNewGraph() {
new_edges_.resize(total_scc_number_);
new_graph_node_in_degree_.resize(total_scc_number_, 0);
int total = scc_solver_.VertexNumber();
for (int i = 0; i < total; ++i) {
int scc0 = scc_indices_[i];
for (auto e : scc_solver_.Tos(i)) {
int scc1 = scc_indices_[e];
if (scc0 != scc1 &&
new_edges_[scc1].find(scc0) == new_edges_[scc1].end()) {
new_edges_[scc1].insert(scc0);
++new_graph_node_in_degree_[scc0];
}
}
}
} void TopSort() {
std::vector<int> conflict(total_scc_number_);
int total = scc_solver_.VertexNumber() / 2;
for (int i = 0; i < total; ++i) {
conflict[scc_indices_[i * 2]] = scc_indices_[i * 2 + 1];
conflict[scc_indices_[i * 2 + 1]] = scc_indices_[i * 2];
}
last_color_.resize(total_scc_number_, -1);
std::stack<int> st;
for (int i = 0; i < total_scc_number_; ++i) {
if (0 == new_graph_node_in_degree_[i]) {
st.push(i);
}
}
while (!st.empty()) {
int u = st.top();
st.pop();
if (last_color_[u] == -1) {
last_color_[u] = 0;
last_color_[conflict[u]] = 1;
}
for (auto e : new_edges_[u]) {
int cur = --new_graph_node_in_degree_[e];
if (cur == 0) {
st.push(e);
}
}
}
} std::vector<int> scc_indices_;
int total_scc_number_ = 0;
std::vector<std::unordered_set<int>> new_edges_;
std::vector<int> new_graph_node_in_degree_;
std::vector<int> last_color_; StronglyConnectedComponentSolver scc_solver_;
}; class GCDLCM {
public:
std::string possible(int n, const std::string &type,
const std::vector<int> &A, const std::vector<int> &B,
const std::vector<int> &C) {
std::unordered_set<int> primes;
for (auto c : C) {
for (int i = 2; i * i <= c; ++i) {
if (c % i == 0) {
primes.insert(i);
while (c % i == 0) {
c /= i;
}
}
}
if (c > 1) {
primes.insert(c);
}
}
int m = static_cast<int>(C.size());
auto Check = [&](int p) {
std::vector<int> min(n, 0);
std::vector<int> max(n, 1000);
std::vector<int> number(m, 0); for (int i = 0; i < m; ++i) {
int t = C[i];
while (t % p == 0) {
++number[i];
t /= p;
}
if (type[i] == 'G') {
min[A[i]] = std::max(min[A[i]], number[i]);
min[B[i]] = std::max(min[B[i]], number[i]);
} else {
max[A[i]] = std::min(max[A[i]], number[i]);
max[B[i]] = std::min(max[B[i]], number[i]);
}
}
for (int i = 0; i < n; ++i) {
if (min[i] > max[i]) {
return false;
}
}
std::unique_ptr<TwoSatisfiabilitySolver> solver(
new TwoSatisfiabilitySolver());
solver->Initialize(n * 2);
for (int i = 0; i < m; i++) {
int u = A[i];
int v = B[i];
if (type[i] == 'G') {
bool x = min[u] > number[i];
bool y = min[v] > number[i];
if (x && y) {
return false;
} else if (x) {
if (min[v] != max[v]) {
solver->SetTrue(v, false);
}
} else if (y) {
if (min[u] != max[u]) {
solver->SetTrue(u, false);
}
} else {
if (min[v] != max[v] && min[u] != max[u]) {
solver->AddConstraint(v, true, u, false);
solver->AddConstraint(u, true, v, false);
}
}
} else {
bool x = max[u] < number[i];
bool y = max[v] < number[i];
if (x && y) {
return false;
} else if (x) {
if (min[v] != max[v]) {
solver->SetTrue(v, true);
}
} else if (y) {
if (min[u] != max[u]) {
solver->SetTrue(u, true);
}
} else {
if (min[v] != max[v] && min[u] != max[u]) {
solver->AddConstraint(v, false, u, true);
solver->AddConstraint(u, false, v, true);
}
}
}
}
return solver->ExistSolution();
};
for (auto p : primes) {
if (!Check(p)) {
return "Solution does not exist";
}
}
return "Solution exists";
}
};

topcoder srm 633 div1的更多相关文章

  1. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  2. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  3. [topcoder]SRM 633 DIV 2

    第一题,http://community.topcoder.com/stat?c=problem_statement&pm=13462&rd=16076 模拟就可以了. #includ ...

  4. topcoder srm 714 div1

    problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...

  5. topcoder srm 738 div1 FindThePerfectTriangle(枚举)

    Problem Statement      You are given the ints perimeter and area. Your task is to find a triangle wi ...

  6. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  7. Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串

    Problem Statement      The Happy Letter game is played as follows: At the beginning, several players ...

  8. TopCoder SRM 633 Div.2 500 Jumping

    题意:给一个点(x,y),给一些步长delta1,delta2...deltaN,问从(0,0)严格按照步长走完N步后能否正好到达(x,y)点. 解法:其实就是判断这些线段和(0,0)-(x,y)这条 ...

  9. Topcoder SRM 584 DIV1 600

    思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...

随机推荐

  1. STL的sort函数是使用什么排序算法的?

    先占坑,大概就是主要快速排序+插入排序+堆排序的合体

  2. JDBC-DBUtils工具-[课本293]-ResultSetHander接口的三种实现类的BeanHander/BeanListHander/ScalarHander

    ---恢复内容开始--- ResultSetHander接口 1.使用BeanHandler()只返回第一行结果集 ,封装到一个对应的JavaBean中 ;eg: User user=(User)bd ...

  3. 实践论:github搜索源码内容

    github搜索源码内容 github搜索源码内容 github搜索源码内容

  4. DEVC++如何调试代码

    DEVC++小技巧 学习C语言的同学大多都会使用DEVC++这个软件,但是在使用的时候会发现是不可以调试的,因为我们的软件默认是将调试关闭了的.下面是调试的具体方法. 点击窗口的工具按钮 点击编辑按钮 ...

  5. 0020SpringBoot使用SpringCloud中的eureka实现远程调用

    要实现远程调用,主要需要三个module:一个注册中心.一个服务提供者.一个服务消费者,然后进行各自的配置和编码,详细内容如下: 1.建一个空的project,创建3各module a.注册中心模块 ...

  6. ubuntu下卸载旧Mysql并安装新Mysql(升级)

    由于从apt-get下安装的Mysql不是最新版的,所以,需要升级.先卸载,再安装. 1.卸载 先看mysql是否在运行: netstat -tap | grep mysql 然后 sudo apt- ...

  7. LightOJ - 1116-Ekka Dokka(思维)

    链接: https://vjudge.net/problem/LightOJ-1116 题意: Ekka and his friend Dokka decided to buy a cake. The ...

  8. HDU-2082-找单词(母函数)

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=2082 题意: 假设有x1个字母A, x2个字母B,..... x26个字母Z,同时假设字母A的价值为1, ...

  9. JAVA的循环结构进阶

    1.什么是二重循环:                        一个循环体内又包含另一个完整的循环结构                     语法:                       ...

  10. jq 字符串转数组

    一般我们在添加关键词时  会添加几组关键词     上传时怎么取值呢 取值时用以下格式 就能取到值 var FTag = "" //AAA,BBB if (FTag1 != &qu ...