费马小定理&欧拉定理

费马小定理:

如果\(p\)是一个质数,而整数\(a\)不是\(p\)的倍数,\(a^{p-1}\equiv1\pmod p\)

欧拉定理:

当\(a\)与\(n\)互质时,\(a^b \equiv a^{b\%\phi(n)} \pmod n\)

扩展欧拉定理:

\[a^b \equiv
\begin{cases}
a^b\pmod n (b<\phi(n))\\
a^{b\%\phi(n)+\phi(n)\pmod n (b\ge\phi(n))}\\
\end{cases}
\]

BSGS

求方程\(a^x\equiv b\pmod p\)(\(a\)与\(p\)互质)的解

取\(m=\lceil \sqrt p\rceil\),设\(x = m*i-j\)

那么易知,\((a^m)^i\equiv b*a^j\pmod p\)

我们可以把右边的全部丢到\(map\)里,然后枚举左边的,看看\(map\)中有没有


map<int, int> M;
int BSGS(int a, int b, int p) {
if (b == 1 && a) return 0;
M.clear(); int m = ceil(sqrt(p));
LL t = 1;
for (int i = 0; i < m; i++, t = t * a % p) M[t * b % p] = i;
for (int i = 1, s = t; i <= m + 1; i++, s = t * s % p) {
map<int, int> :: iterator it = M.find(s);
if (it == M.end()) continue;
return m * i - (it->second);
}
return -1;
}
int main() {
int a, b, p;
while (scanf("%d%d%d", &p, &a, &b) != EOF) {
int ans = BSGS(a, b, p);
if (ans == -1) puts("no solution");
else printf("%d\n", ans);
}
return 0;
}

EXBSGS

当\(a\)与\(p\)不互质时,就不能除过去。

考虑,\(a^x=p*z+b\)

我们取\(d = gcd(a,p)\)

如果\(b\)不是\(d\)的倍数显然无解

然后整体除\(d\)得到\(\frac{a}{d}a^{x-1}=\frac{p}{d}*z+\frac{b}{d}\)

显然可以递归处理。。

记录一下系数

然后最后回带一下即可。

#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int Mod = 1e5 + 7;
int gcd(int x, int y) {
return !y ? x : gcd(y, x % y);
}
struct Hash {
struct node {
int a, b, nxt;
} A[1000010];
int lst[Mod], tot;
void clear() { memset(lst, 0, sizeof(lst)); tot = 0; }
void add(int a, int b, int S) {
A[++tot] = (node) {a, b, lst[S]};
lst[S] = tot;
}
void insert(int a, int b) { add(a, b, a % Mod); }
int find(int x) {
for (int i = lst[x % Mod]; i; i = A[i].nxt)
if (A[i].a == x) return A[i].b;
return -1;
}
} M;
int exBSGS(int a, int b, int p) {
if (b == 1 && a) return 0;
int d, k = 0, s = 1;
while ((d = gcd(a, p)) > 1) {
if (b % d) { return -1; }
b /= d; p /= d; k++; s = 1ll * s * a / d % p;
if (s == b) { return k; }
}
M.clear(); int m = ceil(sqrt(p));
LL t = 1;
for (int i = 0; i < m; i++, t = t * a % p) M.insert(t * b % p, i);
s = t * s % p;
for (int i = 1; i <= m + 1; i++, s = t * s % p) {
int it = M.find(s); if (it == -1) continue;
return m * i - it + k;
}
return -1;
}
int main() {
int a, b, p;
while (scanf("%d%d%d", &a, &p, &b) != EOF) {
if (!a && !b && !p) return 0;
int ans = exBSGS(a, b, p);
if (ans == -1) puts("No Solution");
else printf("%d\n", ans);
}
return 0;
}

exLucas

二次剩余(Cipolla)

xgzc— math 专题训练(二)的更多相关文章

  1. xgzc— math 专题训练(一)

    Lucas定理 当\(p\)是质数时,有\((^n_m)\equiv(^{n/p}_{m/p}) * (^{n\%p}_{m\%p}) \pmod{p}\) 狄利克雷卷积 定义:\((f*g)(n)= ...

  2. dp专题训练

    ****************************************************************************************** 动态规划 专题训练 ...

  3. DP专题训练之HDU 2955 Robberies

    打算专题训练下DP,做一道帖一道吧~~现在的代码风格完全变了~~大概是懒了.所以.将就着看吧~哈哈 Description The aspiring Roy the Robber has seen a ...

  4. Microsoft .Net Remoting系列专题之二

    Microsoft .Net Remoting系列专题之二 一.远程对象的激活 在Remoting中有三种激活方式,一般的实现是通过RemotingServices类的静态方法来完成.工作过程事实上是 ...

  5. 「kuangbin带你飞」专题十二 基础DP

    layout: post title: 「kuangbin带你飞」专题十二 基础DP author: "luowentaoaa" catalog: true tags: mathj ...

  6. 转:【专题十二】实现一个简单的FTP服务器

    引言: 休息一个国庆节后好久没有更新文章了,主要是刚开始休息完心态还没有调整过来的, 现在差不多进入状态了, 所以继续和大家分享下网络编程的知识,在本专题中将和大家分享如何自己实现一个简单的FTP服务 ...

  7. kuangbin专题十二 POJ3186 Treats for the Cows (区间dp)

    Treats for the Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7949   Accepted: 42 ...

  8. kuangbin专题十二 POJ1661 Help Jimmy (dp)

    Help Jimmy Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14214   Accepted: 4729 Descr ...

  9. kuangbin专题十二 HDU1176 免费馅饼 (dp)

    免费馅饼 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

随机推荐

  1. IDEA GIT 忽略文件 最佳方式

    前言 转载一篇博客,简单,实用. 原文地址:intellij idea 忽略文件不提交 ps:下面均为转载博客的内容: 在intellij中忽略提交文件,分两种情况, 文件没有纳入版本管理 第一种,文 ...

  2. javascript 垃圾回收机制和内存管理

    前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! 垃圾回收机制的原理是找到不再被使用的变量,然后释放其占用的内存,但这个过程不是时时的,因为其开销比较大,所 ...

  3. hdu 4501三重包问题

    好好理解一下背包问题 从01包入手 内层的循环 是为了以后求解记录数据 因为只有一个取舍问题 所以只需要一层循环就可以 这里有三个背包 钱 积分 以及免费物品 那么 就需要三重循环 #include& ...

  4. (十一)SpringBoot之文件上传以及

    一.案例 1.1 配置application.properties #主配置文件,配置了这个会优先读取里面的属性覆盖主配置文件的属性 spring.profiles.active=dev server ...

  5. centos mysql数据库问题:ERROR 1044 (42000): Access denied for user ''@'localhost' to database 'mysql'(转)

    问题描述: 安装好数据库MySQL,进入mysql,设置号密码后,退出的时候,利用密码无法进入,直接回车后可进入,无法看到数据库mysql,use mysql返回错误:ERROR 1044 (4200 ...

  6. jQuery入门简述

    jQuery 是一套快速的,简洁的 javaScript 脚本库,jQuery 由美国人 John Resig 创建,至今已吸引了来自世界各地的众多 javaScript 高手加入其组织,使用户能更方 ...

  7. Spring IOC原理分析

    IOC IOC(Inversion of Control)控制反转:所谓的控制反转,就是把原先需要我们代码自己实现对象的创建和依赖,反转给容器来实现.那么必然Spring需要创建一个容器,同时需要创建 ...

  8. springboot启动流程(十一)aop切面处理过程

    所有文章 https://www.cnblogs.com/lay2017/p/11478237.html 正文 spring的两大核心就是ioc和aop.在关于ioc依赖注入的文章中,我们了解了如何根 ...

  9. iOS常用宏定义大全

    宏定义与常量的区别 宏:只是在预处理器里进行文本替换,不做任何类型检查,宏能定义代码,const不能,多个宏编译时间相对较长,影响开发效率,调试过慢,const只会编译一次,缩短编译时间. 所以在使用 ...

  10. Vue粒子特效(vue-particles插件)

    ` npm install vue-particles --save-dev ` ` import VueParticles from 'vue-particles' Vue.use(VueParti ...