xgzc— math 专题训练(二)
费马小定理&欧拉定理
费马小定理:
如果\(p\)是一个质数,而整数\(a\)不是\(p\)的倍数,\(a^{p-1}\equiv1\pmod p\)
欧拉定理:
当\(a\)与\(n\)互质时,\(a^b \equiv a^{b\%\phi(n)} \pmod n\)
扩展欧拉定理:
\begin{cases}
a^b\pmod n (b<\phi(n))\\
a^{b\%\phi(n)+\phi(n)\pmod n (b\ge\phi(n))}\\
\end{cases}
\]
BSGS
求方程\(a^x\equiv b\pmod p\)(\(a\)与\(p\)互质)的解
取\(m=\lceil \sqrt p\rceil\),设\(x = m*i-j\)
那么易知,\((a^m)^i\equiv b*a^j\pmod p\)
我们可以把右边的全部丢到\(map\)里,然后枚举左边的,看看\(map\)中有没有
map<int, int> M;
int BSGS(int a, int b, int p) {
if (b == 1 && a) return 0;
M.clear(); int m = ceil(sqrt(p));
LL t = 1;
for (int i = 0; i < m; i++, t = t * a % p) M[t * b % p] = i;
for (int i = 1, s = t; i <= m + 1; i++, s = t * s % p) {
map<int, int> :: iterator it = M.find(s);
if (it == M.end()) continue;
return m * i - (it->second);
}
return -1;
}
int main() {
int a, b, p;
while (scanf("%d%d%d", &p, &a, &b) != EOF) {
int ans = BSGS(a, b, p);
if (ans == -1) puts("no solution");
else printf("%d\n", ans);
}
return 0;
}
EXBSGS
当\(a\)与\(p\)不互质时,就不能除过去。
考虑,\(a^x=p*z+b\)
我们取\(d = gcd(a,p)\)
如果\(b\)不是\(d\)的倍数显然无解
然后整体除\(d\)得到\(\frac{a}{d}a^{x-1}=\frac{p}{d}*z+\frac{b}{d}\)
显然可以递归处理。。
记录一下系数
然后最后回带一下即可。
#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int Mod = 1e5 + 7;
int gcd(int x, int y) {
return !y ? x : gcd(y, x % y);
}
struct Hash {
struct node {
int a, b, nxt;
} A[1000010];
int lst[Mod], tot;
void clear() { memset(lst, 0, sizeof(lst)); tot = 0; }
void add(int a, int b, int S) {
A[++tot] = (node) {a, b, lst[S]};
lst[S] = tot;
}
void insert(int a, int b) { add(a, b, a % Mod); }
int find(int x) {
for (int i = lst[x % Mod]; i; i = A[i].nxt)
if (A[i].a == x) return A[i].b;
return -1;
}
} M;
int exBSGS(int a, int b, int p) {
if (b == 1 && a) return 0;
int d, k = 0, s = 1;
while ((d = gcd(a, p)) > 1) {
if (b % d) { return -1; }
b /= d; p /= d; k++; s = 1ll * s * a / d % p;
if (s == b) { return k; }
}
M.clear(); int m = ceil(sqrt(p));
LL t = 1;
for (int i = 0; i < m; i++, t = t * a % p) M.insert(t * b % p, i);
s = t * s % p;
for (int i = 1; i <= m + 1; i++, s = t * s % p) {
int it = M.find(s); if (it == -1) continue;
return m * i - it + k;
}
return -1;
}
int main() {
int a, b, p;
while (scanf("%d%d%d", &a, &p, &b) != EOF) {
if (!a && !b && !p) return 0;
int ans = exBSGS(a, b, p);
if (ans == -1) puts("No Solution");
else printf("%d\n", ans);
}
return 0;
}
exLucas
二次剩余(Cipolla)
xgzc— math 专题训练(二)的更多相关文章
- xgzc— math 专题训练(一)
Lucas定理 当\(p\)是质数时,有\((^n_m)\equiv(^{n/p}_{m/p}) * (^{n\%p}_{m\%p}) \pmod{p}\) 狄利克雷卷积 定义:\((f*g)(n)= ...
- dp专题训练
****************************************************************************************** 动态规划 专题训练 ...
- DP专题训练之HDU 2955 Robberies
打算专题训练下DP,做一道帖一道吧~~现在的代码风格完全变了~~大概是懒了.所以.将就着看吧~哈哈 Description The aspiring Roy the Robber has seen a ...
- Microsoft .Net Remoting系列专题之二
Microsoft .Net Remoting系列专题之二 一.远程对象的激活 在Remoting中有三种激活方式,一般的实现是通过RemotingServices类的静态方法来完成.工作过程事实上是 ...
- 「kuangbin带你飞」专题十二 基础DP
layout: post title: 「kuangbin带你飞」专题十二 基础DP author: "luowentaoaa" catalog: true tags: mathj ...
- 转:【专题十二】实现一个简单的FTP服务器
引言: 休息一个国庆节后好久没有更新文章了,主要是刚开始休息完心态还没有调整过来的, 现在差不多进入状态了, 所以继续和大家分享下网络编程的知识,在本专题中将和大家分享如何自己实现一个简单的FTP服务 ...
- kuangbin专题十二 POJ3186 Treats for the Cows (区间dp)
Treats for the Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7949 Accepted: 42 ...
- kuangbin专题十二 POJ1661 Help Jimmy (dp)
Help Jimmy Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14214 Accepted: 4729 Descr ...
- kuangbin专题十二 HDU1176 免费馅饼 (dp)
免费馅饼 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
随机推荐
- T100——错误信息提示传入参数显示
LET l_str1 = l_xccc.xccc901LET l_str2 = l_inat015LET l_str = l_str1.trim(),'|',l_str2.trim() CALL cl ...
- Task执行多次
项目中,曾经出现过启动时数据库连接数瞬间增大,当时并没有注意该问题. 后期,由于Task任务多次执行,才着手查看这个问题,经排查,由于tomcat中webapp配置多次,导致webapp被扫描多次(配 ...
- (四)Redis之哈希
一.哈希常用命令 赋值 取值 删除 增加数字 判断字段是否存在 获取hash属性个数 获取hash所有属性名称 1.2.3 赋值取值和删除 package myRedis01; import java ...
- SQL 遍历删除所有表的数据
https://www.cnblogs.com/yige/p/5193253.html declare @sqlTabName varchar(100);-- 声明游标DECLARE C_Employ ...
- [C#] LINQ之SelectMany和GroupJoin
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- JDBC 学习复习10 编写自己的JDBC框架
首先万分感谢狼哥 孤傲苍狼 博客,整个jdbc学习的博客资料 链接为http://www.cnblogs.com/xdp-gacl/p/4006830.html 详细代码见狼哥博客,列出我学习过程中遇 ...
- luogu题解 P2886 【牛继电器Cow Relays】-经过K边最短路&矩阵
题目链接: https://www.luogu.org/problemnew/show/P2886 Update 6.16 最近看了下<算法导论>,惊奇地发现在在介绍\(APSP\) \( ...
- linux 基础11-例行性命令
1. 什么是例行性命令 1.1 linux工作排程的种类: linux例行性命令主要有两种: at:仅执行一次就从linux的任务中取消 cron:将持续例行性的工作下去 1.2 系统常见的例行性命令 ...
- SSL/TLS 受诫礼(BAR-MITZVAH)攻击漏洞(CVE-2015-2808)
最近发现SSL/TLS漏洞已经修改过,但是绿盟扫描器还可以扫描出来,网上看了很多文章,但是能用的比较少,今天刚好有空,就自己写一下. 方法一: 控制面板--->系统和安全--->管理工具- ...
- Linux 下DNS详解
配置之前先了解一下bind DNS服务器软件:BIND是一种开源的DNS(Domain Name System)协议的实现,包含对域名的查询和响应所需的所有软件.它是互联网上最广泛使用的一种DNS服务 ...