传送门

思路

首先通过各种手玩/找规律/严谨证明,发现当\(n-i\)为border当且仅当对于任意\(k\in[0,i)\),模\(i\)余\(k\)的位置没有同时出现0和1。

换句话说,拿出任意一个1的位置\(x\),一个0的位置\(y\),那么对于\(|x-y|\)的所有约数\(i\),\(n-i\)均不合法。

考虑用NTT优化这个过程:记两个多项式\(A(x),B(x)\)。若\(s_i=0\)则\([x^i]A(x)=1\);若\(s_i=1\)则\([x^{n-i}]B(x)=1\)。然后把\(A\)和\(B\)卷积起来即可。

代码

#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 4004040
#define mod 998244353ll
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char __sr[1<<21],__z[20];int __C=-1,__zz=0;
inline void Ot(){fwrite(__sr,1,__C+1,stdout),__C=-1;}
inline void print(register int x)
{
if(__C>1<<20)Ot();if(x<0)__sr[++__C]='-',x=-x;
while(__z[++__zz]=x%10+48,x/=10);
while(__sr[++__C]=__z[__zz],--__zz);__sr[++__C]='\n';
}
void file()
{
#ifdef NTFOrz
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; int r[sz],limit;
void NTT_init(int n)
{
limit=1;int l=-1;
while (limit<=n+n) limit<<=1,++l;
rep(i,0,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<l);
}
void NTT(ll *a,int type)
{
rep(i,0,limit-1) if (i<r[i]) swap(a[i],a[r[i]]);
for (int mid=1;mid<limit;mid<<=1)
{
ll Wn=ksm(3,(mod-1)/mid>>1);if (type==-1) Wn=inv(Wn);
for (int len=mid<<1,j=0;j<limit;j+=len)
{
ll w=1;
for (int k=0;k<mid;k++,w=w*Wn%mod)
{
ll x=a[j+k],y=a[j+k+mid]*w%mod;
a[j+k]=(x+y)%mod;a[j+k+mid]=(x-y+mod)%mod;
}
}
}
if (type==1) return;
ll I=inv(limit);
rep(i,0,limit-1) a[i]=a[i]*I%mod;
} int n;
char s[sz]; ll tmp1[sz],tmp2[sz],a[sz];
ll ans; int main()
{
file();
cin>>(s+1);n=strlen(s+1);
rep(i,1,n) if (s[i]=='0') tmp1[i]=1;
rep(i,1,n) if (s[i]=='1') tmp2[n-i]=1;
NTT_init(n);
NTT(tmp1,1);NTT(tmp2,1);
rep(i,0,limit-1) tmp1[i]=tmp1[i]*tmp2[i]%mod;
NTT(tmp1,-1);
rep(i,1,n+n) a[i]=tmp1[i];
rep(i,1,n-1)
{
bool flg=1;
for (int j=i;j<n;j+=i) flg&=(a[n-j]==0&&a[n+j]==0);
if (flg) ans^=1ll*(n-i)*(n-i);
}
ans^=1ll*n*n;
cout<<ans;
return 0;
}

LOJ6436. 「PKUSC2018」神仙的游戏 [NTT]的更多相关文章

  1. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

  2. loj#6436. 「PKUSC2018」神仙的游戏(NTT)

    题面 传送门 题解 一旦字符串踏上了通配符的不归路,它就永远脱离了温暖的字符串大家庭的怀抱 用人话说就是和通配符扯上关系的字符串就不是个正常的字符串了比如说这个 让我们仔细想想,如果一个长度为\(le ...

  3. loj#6436. 「PKUSC2018」神仙的游戏(生成函数)

    题意 链接 Sol 生成函数题都好神仙啊qwq 我们考虑枚举一个长度\(len\).有一个结论是如果我们按\(N - len\)的余数分类,若同一组内的全为\(0\)或全为\(1\)(?不算),那么存 ...

  4. 「PKUSC2018」神仙的游戏

    题目链接 比如说上面\(|S|\)为12的字符串,我们欲求出\(f(9)\)的值,那么上面相同颜色的字符必须两两能够匹配.也就是说,同种颜色的字符集里不能同时出现0和1.如果只考虑同种颜色集里相邻的两 ...

  5. 【LOJ】#6436. 「PKUSC2018」神仙的游戏

    题解 感觉智商为0啊QAQ 显然对于一个长度为\(len\)的border,每个点同余\(n - len\)的部分必然相等 那么我们求一个\(f[a]\)数组,如果存在\(s[x] = 0\)且\(s ...

  6. LOJ 6436 「PKUSC2018」神仙的游戏——思路+卷积

    题目:https://loj.ac/problem/6436 看题解才会. 有长为 i 的 border ,就是有长为 n-i 的循环节. 考虑如果 x 位置上是 0 . y 位置上是 1 ,那么长度 ...

  7. LOJ #6436. 「PKUSC2018」神仙的游戏

    题目分析 通过画图分析,如果存在border长度为len,则原串一定是长度为n-len的循环串. 考虑什么时候无法形成长度为len的循环串. 显然是两个不同的字符的距离为len的整数倍时,不存在这样的 ...

  8. loj6436【PKUSC2018】神仙的游戏

    $|S| \le 5 \times 10^5$ 题解 这题直接用通配符匹配的套路会错,因为重复部分的$?$可能同时被当做了$0$和$1$ 有长度为$i$的公共前缀后缀等价于有长度为$n-i$的循环节: ...

  9. 【LOJ6436】【PKUSC2018】神仙的游戏(NTT)

    [LOJ6436][PKUSC2018]神仙的游戏(NTT) 题面 LOJ 题解 看到\(zsy\)从\(PKUSC\)回来就秒掉了这种神仙题 吓得我也赶快看了看\(PKUSC\)都有些什么神仙题 然 ...

随机推荐

  1. Effective Java 读书笔记(二):对象通用方法

    1 重写equals方法时请遵守通用约定 (1)无需覆盖equals方法的情况 要求独一无二 不要求逻辑相等 超类已经覆盖equals方法,对其子类也适用 一个类是私有的或者是包私有(可以重写后抛出异 ...

  2. 网络知识(1)TCP/IP五层结构

    图1 数据流向图 1,网络基础 1.1 发展 古代:①烽火狼烟最为原始的0-1单bit信息传递:②飞鸽传书.驰道快马通信,多字节通信: 近代:①轮船信号灯:②无线电报[摩尔斯码]: 现代:①有线模拟通 ...

  3. 多节点bigchaindb集群部署

    文章比较的长,安装下来大概4个小时左右,我个人使用的服务器,速度会快一点. 安装环境 ostname ip os node-admin 192.168.237.130 ubuntu 18.04.2 d ...

  4. 请问IOS中做一个手机网站的app壳复杂吗?

    公司开发了一个平台,手机网站已经做出来了,想开发一个苹果应用app,但公司没人会IOS开发,为了减小成本,现在想直接做一个壳来加载手机网站,请问在ios中复杂吗?是否有相应的控件直接加载url就行? ...

  5. JS基础_this

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. maven项目打包和编译跳过单元测试和javadoc

    代码中可能由于单元测试.注释(方法中的参数)或者maven javadoc插件的问题导致无法打包,影响工作,为避免这两种情况可以在打包时输入命令: mvn clean install -Dmaven. ...

  7. GraphQL实战篇(一)

    看过基础篇的都知道,GraphQL创建Schema有两种方式,Schema First和Graph Type,前者使用GraphQL Schema Language类似于EF的DB First:后者和 ...

  8. springboot启动流程(十一)aop切面处理过程

    所有文章 https://www.cnblogs.com/lay2017/p/11478237.html 正文 spring的两大核心就是ioc和aop.在关于ioc依赖注入的文章中,我们了解了如何根 ...

  9. impala 中SQL的优化方法

    1.取流水表的数据时,如果是使用全部分区数据,不能从SA层数据取数,需要改从SH层取数,因为SH层为parquet存储,查询性能较好. 2.对于脚本中使用的临时表,如果存在以下情况需要进行统计表信息  ...

  10. JS (二)

    ]1 函数 1 函数就是一段待执行的代码段 2 函数可以实现功能的封装,可以实现代码的复用 3 函数使用: 1 函数声明 2 函数调用 4 语法: 1 函数声明 1 使用function关键字进行函数 ...