luogu

首先gcd为\(G\),lcm为\(L\),有可能出现的数(指同时是\(G\)的因数以及是\(L\)的倍数)可以发现只有几百个.如果选出的数要能取到gcd,那么对于每种质因子,都要有一个数的这种质因子出现次数取到最小值,要取到lcm,也就是每种质因子都有数达到其出现次数的最大值.那我们给每个合法的数一个二进制权值,表示这个数的某种质因子出现次数是否为这种质因子出现次数最小值/最大值

那么现在问题就是选出若干个数,使得权值或起来为全集的方案,设\(f_i\)为或起来为\(i\)的答案.直接做复杂度有点大,这里再设\(g_i\)为或起来为\(i\)的子集的答案,因为二进制权值为\(i\)子集的数都可以选或不选,所以如果\(cnt_i\)为二进制权值为\(i\)子集的数个数,那么\(g_i=2^{cnt_i}\).\(cnt\)可以高维前缀和求得.然后要由\(g\)推到\(f\),因为\(g\)恰好是\(f\)的高维前缀和形式,所以可以容斥求得\(f\),即\(f_s=\sum_{t\subseteq s} (-1)^{|s|-|t|}g_t\)

现在是每次强制要选一个数,使得子集权值或起来为全集.那么只用考虑包含给定数二进制权值\(s\)的集合\(t\)的贡献就行了.如果记全集为\(U\),答案大概可以写成这样\(ans=\frac{\sum_{s\subseteq t} (-1)^{|U|-|t|}g_t}{2}\),要除以\(2\)是因为这个给定的数不可以不选

#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double using namespace std;
const int N=1000+10,M=(1<<16)+10,mod=1e9+7,inv2=500000004;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int fpow(int a,int b){int an=1;while(b){if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1;} return an;}
map<int,int> id;
int n,m,gg,ll,pg[10][2],pl[10][2],tt;
int f[N],an[N],g[M],pc[M];
void inii(int o,int s,int zt)
{
if(o>tt){if(s<=n) id[s]=++m,f[m]=zt,++g[zt];return;}
int j=1;
for(int i=1;i<=pg[o][1];++i) j*=pg[o][0];
for(int i=pg[o][1];i<=pl[o][1];++i,j*=pg[o][0])
inii(o+1,s*j,zt|((i==pg[o][1])<<(o-1))|((i==pl[o][1])<<(o+tt-1)));
} int main()
{
n=rd(),gg=rd(),ll=rd();
int x=ll,sqt=sqrt(x);
for(int i=2;i<=sqt;++i)
if(x%i==0)
{
pl[++tt][0]=i;
while(x%i==0) ++pl[tt][1],x/=i;
if(x==1) break;
}
if(x>1) pl[++tt][0]=x,pl[tt][1]=x;
x=gg;
for(int i=1;i<=tt;++i)
{
pg[i][0]=pl[i][0];
while(x%pg[i][0]==0) ++pg[i][1],x/=pg[i][0];
}
inii(1,1,0);
int nn=1<<(tt<<1),u=nn-1;
for(int j=1;j<nn;j<<=1)
for(int i=0;i<nn;++i)
if(i&j) g[i]=g[i]+g[i^j];
for(int i=0;i<nn;++i) g[i]=fpow(2,g[i]);
for(int i=1;i<nn;++i) pc[i]=pc[i^(i&(-i))]+1;
for(int i=1;i<=m;++i)
{
int zt=f[i]^u,tc=tt<<1;
for(int j=zt;;j=(j-1)&zt)
{
an[i]=(an[i]+1ll*g[j|f[i]]*((tc-pc[j|f[i]])&1?-1:1)+mod)%mod;
if(!j) break;
}
an[i]=1ll*an[i]*inv2%mod;
}
int q=rd();
while(q--)
{
int x=rd();
if(!id.count(x)) puts("0");
else printf("%d\n",an[id[x]]);
}
return 0;
}

luogu P5366 [SNOI2017]遗失的答案的更多相关文章

  1. 洛谷$P5366\ [SNOI2017]$遗失的答案 数论+$dp$

    正解:数论$dp$ 解题报告: 传送门$QwQ$ 考虑先质因数分解.所以$G$就相当于所有系数取$min$,$L$就相当于所有系数取$max$ 这时候考虑,因为数据范围是$1e8$,$1e8$内最多有 ...

  2. 【BZOJ5019】[SNOI2017]遗失的答案(FWT,动态规划)

    [BZOJ5019][SNOI2017]遗失的答案(FWT,动态规划) 题面 BZOJ 题解 发现\(10^8\)最多分解为不超过\(8\)个本质不同质数的乘积. 而\(gcd\)和\(lcm\)分别 ...

  3. BZOJ5019[Snoi2017]遗失的答案——FWT+状压DP

    题目描述 小皮球在计算出答案之后,买了一堆皮肤,他心里很开心,但是一不小心,就忘记自己买了哪些皮肤了.==|||万 幸的是,他还记得他把所有皮肤按照1-N来编号,他买来的那些皮肤的编号(他至少买了一款 ...

  4. bzoj5019: [Snoi2017]遗失的答案

    Description 小皮球在计算出答案之后,买了一堆皮肤,他心里很开心,但是一不小心,就忘记自己买了哪些皮肤了.==|||万 幸的是,他还记得他把所有皮肤按照1-N来编号,他买来的那些皮肤的编号( ...

  5. BZOJ5019 SNOI2017遗失的答案(容斥原理)

    显然存在方案的数一定是L的因数,考虑对其因子预处理答案,O(1)回答. 考虑每个质因子,设其在g中有x个,l中有y个,则要求所有选中的数该质因子个数都在[x,y]中,且存在数的质因子个数为x.y.对于 ...

  6. bzoj 5019: [Snoi2017]遗失的答案【dp+FWT】

    满足GL的组合一定包含GL每个质因数最大次幂个最小次幂,并且能做限制这些数不会超过600个 然后质因数最多8个,所以可以状压f[s1][s2]为选s1集合满足最大限制选s2集合满足最小限制 dfs一下 ...

  7. bzoj 5019 [Snoi2017]遗失的答案

    题面 https://www.lydsy.com/JudgeOnline/problem.php?id=5019 题解 如果L不是G的倍数 答案为0 下面考虑G|L的情况 将G,L质因数分解 设$L= ...

  8. LOJ2257 SNOI2017 遗失的答案 容斥、高维前缀和

    传送门 数字最小公倍数为\(L\)的充分条件是所有数都是\(L\)的约数,而\(10^8\)内最多约数的数的约数也只有\(768\)个.所以我们先暴力找到所有满足是\(L\)的约数.\(G\)的倍数的 ...

  9. [SNOI2017]遗失的答案

    题目 首先\(G,L\)肯定会满足\(G|L\),否则直接全部输出\(0\) 之后我们考虑一下能用到的质因数最多只有\(8\)个 同时我们能选择的数\(x\)肯定是\(L\)的约数,还得是\(G\)的 ...

随机推荐

  1. docker基础知识普及(一)

    背景 这篇内容是之前给部门同事培训时写的文档,旨在传达一些docker相关概念,有个基本印象,当然,以下内容都来自网络,我只是个搬运工.具体操作在下篇文章中 一.什么是docker? 1. Docke ...

  2. 精讲JS逻辑运算符&&、||,位运算符|,&

    1.JS中的||符号: 运算方法: 只要“||”前面为false,不管“||”后面是true还是false,都返回“||”后面的值. 只要“||”前面为true,不管“||”后面是true还是fals ...

  3. Java-synchronized 中锁的状态及其转换

    synchronized 锁的优化过程:无锁 -> 偏向锁 -> 轻量级锁 -> 重量级锁 一.不同锁对象的状态表示(需要了解 Java 对象头) https://wiki.open ...

  4. mysql数据库基本操作sql语言

    mysql的启动与关闭 启动 /etc/init.d/mysql start 多实例使用自建脚本启动 2种关闭数据库方法 mysqladmin -uroot -p密码 shutdown #优雅关闭/e ...

  5. python 学习笔记(三)根据字典中值的大小对字典中的项排序

    字典的元素是成键值对出现的,直接对字典使用sorted() 排序,它是根据字典的键的ASCII编码顺序进行排序,要想让字典根据值的大小来排序,可以有两种方法来实现: 一.利用zip函数将字典数据转化为 ...

  6. Python web 项目的依赖管理工具

    Poetry可以帮助你声明.管理和安装Python项目的依赖项,确保你可以在任何地方都拥有正确的堆栈. Poetry支持Python 2.7 和Python 3以上 安装 Poetry提供了一个自定义 ...

  7. 大容量类Redis存储--Pika介绍

    嘉宾介绍 大家好,首先自我介绍一下,我是360 web平台-基础架构组的宋昭,负责大容量类redis存储pika的和分布式存储Bada的开发工作,这是我的github和博客地址,平时欢迎指正交流^^ ...

  8. RazorSQL for Mac如何编辑数据?

    RazorSQL 是一个非开源的功能非常强大数据库查询工具.SQL的编辑.数据库管理工具.支持通过 JDBC 和 ODBC 连接超过 29 种的数据库.允许您从一个数据库工具查询,更新,导航和管理所有 ...

  9. 当C++使用引用传递参数时,应当注意的问题

    如果实参与引用参数不匹配,C++将生成临时变量.如果引用参数是const,则编译器在下面两种情况下生成临时变量: 实参类型是正确的,但不是左值 实参类型不正确,但可以转换为正确的类型 左值参数是可被引 ...

  10. python爬虫概述

    爬虫的使用:爬虫用来对网络的数据信息进行爬取,通过URL的形式,将数据保存在数据库中并以文档形式或者报表形式进行展示. 爬虫可分为通用式爬虫或特定式爬虫,像我们经常用到的搜索引擎就属于通用式爬虫,如果 ...