[LGP4859,...] 一类奇怪的容斥套DP
漫山遍野都是fake的光影。
题目
[LGP4859] 已经没有什么好害怕的了
给定两个长度为n的数组a和b,将a中元素与b中元素配对,求满足ai>bj的配对(i,j)个数减去满足ai<bi的配对(i,j)个数恰好为k的方案数,保证ab中无重复元素。
[某年NOI欢乐赛] 决斗
给定两个长度为n的数组a和b,将a中元素与b中元素随机配对,求满足ai≥bj的配对(i,j)个数k次方的期望。
题解
对于前一个问题,我们转换为求满足ai>(≥)bj的配对(i,j)恰好为k=(n+k)/2的方案数。这样就能与第二个问题形式上保持一致。称这样配对的配对为“配对”(雾)。
其次将ab从小到大排序,然后依次为a数组配对,设f[i,j]表示前i个位置上确定了j个“配对”的方案数(跳过剩下的i-j对不为“配对”的配对的转移),w[i]表示满足bj≤ai的最大的j,有转移 f[i,j]=f[i-1,j]+f[i-1,j-1]*(w[i]-j+1)。后边那个系数其实是(w[i]-w[i-1])+(w[i-1]-(j-1))得来的。
如果你有兴趣尝试dp前i个位置上恰好有j个配对,会发现不为“配对”的情况根本dp不动。
考虑对f[n,i]统一确定剩下的(n-i)个配对,记g[i]=f[n,i]*(n-i)!。显然g[i]的统计是有重复的。具体的,设h[i]为恰好有i个“配对”的方案数,h[i]在g[j]中被统计C(i,j)次,其中i≥j。
即g[i]=Σ[j≥i] h[j]*C(j,i),移项得h[i]=g[i] Σ[j>i] h[j]*C(j,i),可以递推求解了。
后一个问题的后续操作已经不重要了你说是吧
参考实现
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=2019;
const int mod=1e9+9;
int n,K,a[N],b[N],w[N],f[N][N],c[N][N];
int main() {
scanf("%d%d",&n,&K);
for(int i=1; i<=n; ++i) scanf("%d",a+i);
for(int i=1; i<=n; ++i) scanf("%d",b+i);
if((n+K)&1) {
puts("0");
return 0;
}
K=(n+K)/2;
sort(a+1,a+n+1);
sort(b+1,b+n+1);
for(int i=1,j=0; i<=n; ++i) {
while(j<n&&b[j+1]<=a[i]) ++j;
w[i]=j;
}
for(int i=0; i<=n; ++i) {
c[i][0]=1;
for(int j=1; j<=i; ++j)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
f[0][0]=1;
for(int i=1; i<=n; ++i) {
f[i][0]=f[i-1][0];
int J=min(i,w[i]);
for(int j=1; j<=J; ++j)
f[i][j]=(f[i-1][j]+(ll)f[i-1][j-1]*(w[i]-j+1)%mod)%mod;
for(int j=J+1; j<=i; ++j)
f[i][j]=f[i-1][j];
}
int fc=1;
for(int i=n; i>=K; --i) {
w[i]=(ll)f[n][i]*fc%mod;
for(int j=i+1; j<=n; ++j)
w[i]=(w[i]+mod-(ll)w[j]*c[j][i]%mod)%mod;
fc=(ll)fc*(n-i+1)%mod;
}
printf("%d\n",w[K]);
return 0;
}
[LGP4859,...] 一类奇怪的容斥套DP的更多相关文章
- hdu-5794 A Simple Chess(容斥+lucas+dp)
题目链接: A Simple Chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Ot ...
- 浅析容斥和DP综合运用
浅析容斥和DP综合运用 前言 众所周知在数数题中有一种很重要的计数方法--容斥.但是容斥有一个很大的缺陷:枚举子集的复杂度过高.所以对于数据规模较大的情况会很乏力,那么我们就只能引入容斥DP. 复习一 ...
- 【BZOJ-4455】小星星 容斥 + 树形DP
4455: [Zjoi2016]小星星 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 204 Solved: 137[Submit][Status] ...
- HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)
传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...
- bzoj 3622 已经没有什么好害怕的了 类似容斥,dp
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1213 Solved: 576[Submit][Status][ ...
- 洛谷P5206 [WC2019]数树 [容斥,DP,生成函数,NTT]
传送门 Orz神仙题,让我长了许多见识. 长式子警告 思路 y=1 由于y=1时会导致后面一些式子未定义,先抓出来. printf("%lld",opt==0?1:(opt==1? ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- HDU 4632 Palindrome subsequence & FJUT3681 回文子序列种类数(回文子序列个数/回文子序列种数 容斥 + 区间DP)题解
题意1:问你一个串有几个不连续子序列(相同字母不同位置视为两个) 题意2:问你一个串有几种不连续子序列(相同字母不同位置视为一个,空串视为一个子序列) 思路1:由容斥可知当两个边界字母相同时 dp[i ...
- [LOJ2542][PKUWC2018]随机游走(MinMax容斥+树形DP)
MinMax容斥将问题转化为求x到S中任意点的最小时间. 树形DP,直接求概率比较困难,考虑只求系数.最后由于x节点作为树根无父亲,所以求出的第二个系数就是答案. https://blog.csdn. ...
随机推荐
- 【CUDA 基础】3.3 并行性表现
title: [CUDA 基础]3.3 并行性表现 categories: - CUDA - Freshman tags: - nvprof toc: true date: 2018-04-15 21 ...
- Java web分级测试评分C级感受
上周一进行了java分级测试,但是完成的不太好,先看题目: 石家庄铁道大学选课管理系统 1.项目需求: 本项目所开发的学生选课系统完成学校对学生的选课信息的统计与管理,减少数据漏掉的情况,同时也节约人 ...
- 关于hive on spark会话的共享状态
spark sql中有一个类: org.apache.spark.sql.internal.SharedState 它是用来做: 1.元数据地址管理(warehousePath) 2.查询结果缓存管理 ...
- Java_GUI小游戏--FlappyBird 橡树鸟
本文讲解的是一款来自独立游戏开发者Dong Nguyen所开发的游戏FlappyBird,也叫橡树鸟 四个类代码: package Gary; import java.awt.*; import ja ...
- 12.数值的整数次方 Java
题目描述 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方. 这道题看似简单,其实BUG重重.要注意的问题: 1 关于次幂的问题特殊的情况, ...
- 邻居子系统输出 之 neigh_output、neigh_hh_output
概述 ip层在构造好ip头,检查完分片之后,会调用邻居子系统的输出函数neigh_output进行输出,输出分为有二层头缓存和没有两种情况,有缓存时调用neigh_hh_output进行快速输出,没有 ...
- Python学习笔记—条件判断和循环
条件判断 计算机之所以能做很多自动化的任务,因为它可以自己做条件判断. 比如,输入用户年龄,根据年龄打印不同的内容,在Python程序中,用if语句实现: age = 20 if age >= ...
- 移动App双周版本迭代策略
对于移动互联网产品来说,迭代的速度就是生命.我创业时做移动App时是一周一版,而现在是2周1版.相比起小公司,大公司迭代时间虽长,却更为不易,因为大公司流程更多,参与人数更多,需求更多,实现这样的快速 ...
- leetcode 100. Same Tree、101. Symmetric Tree
100. Same Tree class Solution { public: bool isSameTree(TreeNode* p, TreeNode* q) { if(p == NULL &am ...
- git push 本地项目推送到远程分支[z]
大家有的时候,会在本地新建项目,这里说一下在本地项目建立本地git仓库,然后push到远程仓库的步骤 1.在本地项目的文件夹下,git仓库初始化 git init 初始化本地git仓库 2. git ...