pandas.DataFrame.join

自己弄了很久,一看官网。感觉自己宛如智障。不要脸了,直接抄

DataFrame.join(otheron=Nonehow='left'lsuffix=''rsuffix=''sort=False)

Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list.

Parameters:

other : DataFrame, Series with name field set, or list of DataFrame

Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame

on : column name, tuple/list of column names, or array-like

Column(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiples columns given, the passed DataFrame must have a MultiIndex. Can pass an array as the join key if not already contained in the calling DataFrame. Like an Excel VLOOKUP operation

how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default: ‘left’

How to handle the operation of the two objects.

  • left: use calling frame’s index (or column if on is specified)

  • right: use other frame’s index

  • outer: form union of calling frame’s index (or column if on is

    specified) with other frame’s index

  • inner: form intersection of calling frame’s index (or column if

    on is specified) with other frame’s index

lsuffix : string

Suffix to use from left frame’s overlapping columns

rsuffix : string

Suffix to use from right frame’s overlapping columns

sort : boolean, default False

Order result DataFrame lexicographically by the join key. If False, preserves the index order of the calling (left) DataFrame

Returns:

joined : DataFrame

See also

DataFrame.merge
For column(s)-on-columns(s) operations

Notes

on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects

Examples

>>> caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
>>> caller
A key
0 A0 K0
1 A1 K1
2 A2 K2
3 A3 K3
4 A4 K4
5 A5 K5
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
... 'B': ['B0', 'B1', 'B2']})
>>> other
B key
0 B0 K0
1 B1 K1
2 B2 K2

Join DataFrames using their indexes.==》join on indexes

>>> caller.join(other, lsuffix='_caller', rsuffix='_other')
>>>     A key_caller    B key_other
0 A0 K0 B0 K0
1 A1 K1 B1 K1
2 A2 K2 B2 K2
3 A3 K3 NaN NaN
4 A4 K4 NaN NaN
5 A5 K5 NaN NaN

If we want to join using the key columns, we need to set key to be the index in both caller and other. The joined DataFrame will have key as its index.

>>> caller.set_index('key').join(other.set_index('key'))
>>>      A    B
key
K0 A0 B0
K1 A1 B1
K2 A2 B2
K3 A3 NaN
K4 A4 NaN
K5 A5 NaN

Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other’s index but we can use any column in the caller. This method preserves the original caller’s index in the result.

>>> caller.join(other.set_index('key'), on='key')
>>>     A key    B
0 A0 K0 B0
1 A1 K1 B1
2 A2 K2 B2
3 A3 K3 NaN
4 A4 K4 NaN
5 A5 K5 NaN

Pandas中DataFrame数据合并、连接(concat、merge、join)之join的更多相关文章

  1. Pandas中DataFrame数据合并、连接(concat、merge、join)之concat

    一.concat:沿着一条轴,将多个对象堆叠到一起 concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, key ...

  2. Pandas中DataFrame数据合并、连接(concat、merge、join)之merge

    二.merge:通过键拼接列 类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来. 该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面 ...

  3. Python基础 | pandas中dataframe的整合与形变(merge & reshape)

    目录 行的union pd.concat df.append 列的join pd.concat pd.merge df.join 行列转置 pivot stack & unstack melt ...

  4. Spark与Pandas中DataFrame对比

      Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制paral ...

  5. Spark与Pandas中DataFrame对比(详细)

      Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制paral ...

  6. 将pandas的DataFrame数据写入MySQL数据库 + sqlalchemy

    将pandas的DataFrame数据写入MySQL数据库 + sqlalchemy import pandas as pd from sqlalchemy import create_engine ...

  7. 排序合并连接(sort merge join)的原理

    排序合并连接(sort merge join)的原理 排序合并连接(sort merge join)的原理     排序合并连接(sort merge join)       访问次数:两张表都只会访 ...

  8. Python3 Pandas的DataFrame数据的增、删、改、查

    Python3 Pandas的DataFrame数据的增.删.改.查 一.DataFrame数据准备 增.删.改.查的方法有很多很多种,这里只展示出常用的几种. 参数inplace默认为False,只 ...

  9. Pandas中DataFrame修改列名

    Pandas中DataFrame修改列名:使用 rename df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01- ...

随机推荐

  1. 判断屏幕宽度px大小鉴别是移动设备或者PC

    if(window.matchMedia("(max-width: 767px)").matches){ alert("这是一个移动设备.");}else { ...

  2. superset采集流程

    superset采集流程: 先从业务的bi从库oride-slave-bi(10.52.123.212)去拿数,然后计算(每10分钟由airflow调py代码),放到bi的库(BI业务-数据指标存储1 ...

  3. airflow的web任务管理

    ariflow里绿的代表都跑完了:红的表示有问题:点红的图标进去: 点tree view 红色表示那一天失败: 点进去看可以看log: 点clear则是重跑任务:

  4. PAT A1065 A+B and C (64bit) (20 分)

    AC代码 #include <cstdio> int main() { #ifdef ONLINE_JUDGE #else freopen("1.txt", " ...

  5. txt\excel\cvs\xml存储测试数据

    一.目录结构 二.txt存储数据 1.txtData.txt如下: 请您输入手机/邮箱/用户名 请您输入密码 请您输入验证码 2.helper中读取txt数据的代码 def readTXT(self) ...

  6. 【动态规划】Mathematical Curse

    [来源]:2018年焦作网络赛B [题意]: 有n个数字,有m个符号运算.通过不回头(即选取m个数有顺序可言),消除巫术的,并达到最大的价值. 其实意思就是在数组里选取一段子序列,然后进行m次加减乘除 ...

  7. 使用Qt 3D Studio 2.4显着提升性能(渲染速度提高了565%)

    发布于2019年6月18日星期二11评论Qt 3D Studio 2.4显着改善性能 发表于Biz Circuit&Dev Loop,设计,图形,性能,Qt 3D Studio 除了有效使用系 ...

  8. O061、Boot from Volume

    参考https://www.cnblogs.com/CloudMan6/p/5679384.html   Volume 除了可以用作Instance的数据盘,也可以作为启动盘(Bootable Vol ...

  9. python版本

    一般在Linux下,默认会安装一个python2.*的版本,但是我们自己开发有时候需要python3.*的版本 1. 安装python3 .安装依赖包 )首先安装gcc编译器,gcc有些系统版本已经默 ...

  10. ios上滚动不顺畅css处理方式

      overflow-y: auto; -webkit-overflow-scrolling: touch;