pandas.DataFrame.join

自己弄了很久,一看官网。感觉自己宛如智障。不要脸了,直接抄

DataFrame.join(otheron=Nonehow='left'lsuffix=''rsuffix=''sort=False)

Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list.

Parameters:

other : DataFrame, Series with name field set, or list of DataFrame

Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame

on : column name, tuple/list of column names, or array-like

Column(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiples columns given, the passed DataFrame must have a MultiIndex. Can pass an array as the join key if not already contained in the calling DataFrame. Like an Excel VLOOKUP operation

how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default: ‘left’

How to handle the operation of the two objects.

  • left: use calling frame’s index (or column if on is specified)

  • right: use other frame’s index

  • outer: form union of calling frame’s index (or column if on is

    specified) with other frame’s index

  • inner: form intersection of calling frame’s index (or column if

    on is specified) with other frame’s index

lsuffix : string

Suffix to use from left frame’s overlapping columns

rsuffix : string

Suffix to use from right frame’s overlapping columns

sort : boolean, default False

Order result DataFrame lexicographically by the join key. If False, preserves the index order of the calling (left) DataFrame

Returns:

joined : DataFrame

See also

DataFrame.merge
For column(s)-on-columns(s) operations

Notes

on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects

Examples

>>> caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
>>> caller
A key
0 A0 K0
1 A1 K1
2 A2 K2
3 A3 K3
4 A4 K4
5 A5 K5
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
... 'B': ['B0', 'B1', 'B2']})
>>> other
B key
0 B0 K0
1 B1 K1
2 B2 K2

Join DataFrames using their indexes.==》join on indexes

>>> caller.join(other, lsuffix='_caller', rsuffix='_other')
>>>     A key_caller    B key_other
0 A0 K0 B0 K0
1 A1 K1 B1 K1
2 A2 K2 B2 K2
3 A3 K3 NaN NaN
4 A4 K4 NaN NaN
5 A5 K5 NaN NaN

If we want to join using the key columns, we need to set key to be the index in both caller and other. The joined DataFrame will have key as its index.

>>> caller.set_index('key').join(other.set_index('key'))
>>>      A    B
key
K0 A0 B0
K1 A1 B1
K2 A2 B2
K3 A3 NaN
K4 A4 NaN
K5 A5 NaN

Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other’s index but we can use any column in the caller. This method preserves the original caller’s index in the result.

>>> caller.join(other.set_index('key'), on='key')
>>>     A key    B
0 A0 K0 B0
1 A1 K1 B1
2 A2 K2 B2
3 A3 K3 NaN
4 A4 K4 NaN
5 A5 K5 NaN

Pandas中DataFrame数据合并、连接(concat、merge、join)之join的更多相关文章

  1. Pandas中DataFrame数据合并、连接(concat、merge、join)之concat

    一.concat:沿着一条轴,将多个对象堆叠到一起 concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, key ...

  2. Pandas中DataFrame数据合并、连接(concat、merge、join)之merge

    二.merge:通过键拼接列 类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来. 该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面 ...

  3. Python基础 | pandas中dataframe的整合与形变(merge & reshape)

    目录 行的union pd.concat df.append 列的join pd.concat pd.merge df.join 行列转置 pivot stack & unstack melt ...

  4. Spark与Pandas中DataFrame对比

      Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制paral ...

  5. Spark与Pandas中DataFrame对比(详细)

      Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制paral ...

  6. 将pandas的DataFrame数据写入MySQL数据库 + sqlalchemy

    将pandas的DataFrame数据写入MySQL数据库 + sqlalchemy import pandas as pd from sqlalchemy import create_engine ...

  7. 排序合并连接(sort merge join)的原理

    排序合并连接(sort merge join)的原理 排序合并连接(sort merge join)的原理     排序合并连接(sort merge join)       访问次数:两张表都只会访 ...

  8. Python3 Pandas的DataFrame数据的增、删、改、查

    Python3 Pandas的DataFrame数据的增.删.改.查 一.DataFrame数据准备 增.删.改.查的方法有很多很多种,这里只展示出常用的几种. 参数inplace默认为False,只 ...

  9. Pandas中DataFrame修改列名

    Pandas中DataFrame修改列名:使用 rename df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01- ...

随机推荐

  1. Linux三剑客之grep常用参数详细总结

    三剑客grep总结 grep  : Linux三剑客老三      过滤需要的内容 参数: grep一般常用参数: -a :在二进制文件中,以文本文件的方式搜索数据 -c :计算找到 ’ 搜索字符串 ...

  2. 2019牛客暑期多校训练营(第七场)-E Find the median (线段树+离散化 区间为点)

    题目链接:https://ac.nowcoder.com/acm/contest/887/E 题意:给出L[i],R[i],每次添加L[i]...R[i],求出此时的中位数. 思路:因为添加的数范围为 ...

  3. memcached命令行、Memcached数据导出和导入

    1.memcached命令行 telnet 127.0.0.1 11211set key2 0 30 2abSTOREDget key2VALUE key2 0 2abEND  如: set key3 ...

  4. stalstack

    Saltstack 是干什么的 saltstack 是一个开源异构平台基础设置管理工具 Saltstack 能干什么 如果是一个管理成千上百服务器的管理员,你会遇到场景 需要在每台服务器上面部署age ...

  5. Mysql 三大特性详解

    Mysql 三大特性详解 Mysql Innodb后台线程 工作方式 首先Mysql进程模型是单进程多线程的.所以我们通过ps查找mysqld进程是只有一个. 体系架构 InnoDB存储引擎的架构如下 ...

  6. SSD目标检测实战(TF项目)——人脸检测2

    数据转化为VOC格式: 一.我们先看 VOC格式的数据是什么??? Annotations:存放xml 包括 文件夹信息   图片名称. 图片尺寸信息. 图片中object的信息. JPEGImage ...

  7. Codeforces 1189E. Count Pairs

    传送门 可以算是纯数学题了吧... 看到这个 $(x+y)(x^2+y^2)$ 就可以想到化简三角函数时经常用到的操作,左右同乘 那么 $(a_i+a_j)(a_i^2+a_j^2) \equiv  ...

  8. 【IntelliJ IDEA】快捷键

    1.System.out.println();的快捷方法 sout然后Alt+Enter或者直接点 2.idea上 重写父类方法的快捷键 Ctrl+O之后,在弹出的上面选择要重写的方法 3.idea ...

  9. 史上最全的MySQL高性能优化实战总结!

    1.1 前言 MySQL对于很多Linux从业者而言,是一个非常棘手的问题,多数情况都是因为对数据库出现问题的情况和处理思路不清晰.在进行MySQL的优化之前必须要了解的就是MySQL的查询过程,很多 ...

  10. java实现spark常用算子之Take

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...