「ZJOI2014」力 FFT
FFTl裸题,小于的部分直接做,大于的部分倒序后再做就行了。
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1 << 18;
const double Pi = acos(-1.0);
struct cp {
double x, y;
cp() { x = y = 0; }
cp(double x, double y) : x(x), y(y) {}
inline cp operator+(const cp &o) const { return cp(x + o.x, y + o.y); }
inline cp operator-(const cp &o) const { return cp(x - o.x, y - o.y); }
inline cp operator*(const cp &o) const { return cp(x * o.x - y * o.y, x * o.y + o.x * y); }
} f[MAXN], g[MAXN], b[MAXN];
int rev[MAXN];
inline void DFT(cp *arr, int len, int flg) {
for (int i = 0; i < len; ++i)
if (i < rev[i])
swap(arr[i], arr[rev[i]]);
for (int i = 2; i <= len; i <<= 1) {
cp wn = cp(cos(2 * Pi / i), flg * sin(2 * Pi / i));
for (int j = 0; j < len; j += i) {
cp w = cp(1, 0);
for (int k = j; k < j + i / 2; ++k, w = w * wn) {
cp x = arr[k], y = arr[k + i / 2] * w;
arr[k] = x + y;
arr[k + i / 2] = x - y;
}
}
}
if (flg == -1)
for (int i = 0; i < len; ++i) arr[i].x /= len;
}
int n;
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%lf", &f[i].x), g[n - i + 1].x = f[i].x, b[i].x = 1.0 / i / i;
int len = 1;
while (len <= (n << 1)) len <<= 1;
for (int i = 0; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) * (len >> 1));
DFT(f, len, 1), DFT(g, len, 1), DFT(b, len, 1);
for (int i = 0; i < len; ++i) f[i] = f[i] * b[i], g[i] = g[i] * b[i];
DFT(f, len, -1), DFT(g, len, -1);
for (int i = 1; i <= n; ++i) printf("%.3f\n", f[i].x - g[n - i + 1].x);
}
「ZJOI2014」力 FFT的更多相关文章
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
- 「ZJOI2014」星系调查
「ZJOI2014」星系调查 本题核心在于快速求XPs 的线性假设相斥度. 点\((x1,y1)\)到直线\(y=kx+b\)的距离的平方为\(\displaystyle {(kx1+b-y1)^2} ...
- 「ZJOI2014」璀灿光华
「ZJOI2014」璀灿光华 实际上,可以不用建水晶立方体... 因为,发光水晶的方向都要枚举一遍. 只需知道发光水晶每个方向有哪些水晶就可以了. 对于一个发光水晶,将它连接的水晶标号. 从该水晶bf ...
- [ZJOI2014][bzoj3527]力 [FFT]
题面 传送门 思路 把要求的公式列出来: $E_i=\frac{F_i}{q_i}=\sum_{j=1}^i\frac{q_j}{\left(i-j\right)^2}-\sum_{j=i+1}^n\ ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- Note -「多项式」基础模板(FFT/NTT/多模 NTT)光速入门
进阶篇戳这里. 目录 何为「多项式」 基本概念 系数表示法 & 点值表示法 傅里叶(Fourier)变换 概述 前置知识 - 复数 单位根 快速傅里叶正变换(FFT) 快速傅里叶逆变换(I ...
- 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management
写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...
- Loj 3058. 「HNOI2019」白兔之舞
Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...
随机推荐
- react生成二维码
图片实例: 简介: QRCode.js 是一个生成二维码的JS库.主要是通过获取 DOM 的节点,再通过 HTML5 Canvas 绘制而成,不依赖任何库. 用法: 1. 在项目中引入qrcode.m ...
- java输入输出 -- java NIO之文件通道
一.简介 通道是 Java NIO 的核心内容之一,在使用上,通道需和缓存类(ByteBuffer)配合完成读写等操作.与传统的流式 IO 中数据单向流动不同,通道中的数据可以双向流动.通道既可以读, ...
- Centos6.5镜像下载
CentOS6.5系统安装 1.首先打开网易开源镜像站: http://mirrors.163.com/ 当然,大家也可以使用阿里开源镜像站:http://mirrors.aliyun.com/ 2. ...
- python学习-42 装饰器 --- 函数闭包1
函数闭包举例: def father(name): print('hello world') def son(): print('儿子说:我的爸爸是%s' % name) def grandfson( ...
- Django中常用的那些模块路径
Django中常用的那些模块路径 from django.shortcuts import HttpResponse, render, redirect from django import temp ...
- MySQL使用中遇到的error
eclipse连接不上数据库 //加载驱动 //oracal.jdbc.drive.Oracle.Driver //com.mysql.jdbc.Driver try { Class.forName( ...
- Python开发【第五章】:常用模块
一.模块介绍: 1.模块定义 用来从逻辑上组织python代码(变量,函数,类,逻辑:实现一个功能),本质上就是.py结尾python文件 分类:内置模块.开源模块.自定义模块 2.导入模块 本质:导 ...
- 【5号课堂】scratch制作电子生日贺卡
贺卡在我国的使用由来已久,在古代,上层士大夫有用名帖互相问候的习俗 唐宋以后,贺卡的名称及功能有所进步,称为”门状“或“飞帖“,到了明清,又叫“红单“.“贺年帖“等等,听着名字就知功能越来越世俗化,文 ...
- Largest Submatrix 3 CodeForces - 407D (dp,好题)
大意: 给定矩阵, 求选出一个最大矩形, 满足矩形内每个元素互不相同. 考虑枚举上下左三个边界, 求出最大右边界的位置. 注意到固定上边界, 下边界递推时, 每个左边界对应最大右边界是单调不增的. 所 ...
- 游记-pkupc&cts2019
Day0 和boshi.Rayment组的队,昨天听学长说这次比赛可以加学分,他们信科的大部分人都会参加,估摸有两百多支队伍--然而奖品只有不到一百份 我要奖品呐! 上午十一点半到的北京,拉着行李提着 ...