LOJ#3094. 「BJOI2019」删数

之前做atcoder做到过这个结论结果我忘了。。。

em,就是\([1,n]\)之间每个数\(i\),然后\([i - cnt[i] + 1,i]\)可以放一条线段,没被线段放的地方就是需要改的数的总和

之后我们线段树维护区间最小值以及个数

我们要注意如果+1后使得一个本来在\([1,N]\)的点越出了范围,那么就要把这个区间给删掉,-1同理,要加进来

值域开成\(N + 2M\)也就是\(4.5*10^{5}\)即可

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 500005
#define ba 47
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MAXV = 150000,LEN = 450000;
int N,M;
int a[MAXN],d;
int cnt[LEN + 5];
int getpos(int x) {
return x - d + MAXV;
}
struct node {
int l,r,val,cnt,lz;
}tr[LEN * 4 + 5];
void update(int u) {
tr[u].val = min(tr[u << 1].val,tr[u << 1 | 1].val);
tr[u].cnt = 0;
if(tr[u].val == tr[u << 1].val) tr[u].cnt += tr[u << 1].cnt;
if(tr[u].val == tr[u << 1 | 1].val) tr[u].cnt += tr[u << 1 | 1].cnt;
}
void build(int u,int l,int r) {
tr[u].l = l;tr[u].r = r;
if(l == r) {tr[u].cnt = 1;return;}
int mid = (l + r) >> 1;
build(u << 1,l,mid);
build(u << 1 | 1,mid + 1,r);
update(u);
}
void addlz(int u,int v) {
tr[u].val += v;tr[u].lz += v;
}
void pushdown(int u) {
if(tr[u].lz) {
addlz(u << 1,tr[u].lz);
addlz(u << 1 | 1,tr[u].lz);
tr[u].lz = 0;
}
}
void add(int u,int l,int r,int v) {
if(tr[u].l == l && tr[u].r == r) {
addlz(u,v);
return;
}
pushdown(u);
int mid = (tr[u].l + tr[u].r) >> 1;
if(r <= mid) add(u << 1,l,r,v);
else if(l > mid) add(u << 1 | 1,l,r,v);
else {add(u << 1,l,mid,v);add(u << 1 | 1,mid + 1,r,v);}
update(u);
}
pii Query(int u,int l,int r) {
if(tr[u].l == l && tr[u].r == r) return mp(tr[u].val,tr[u].cnt);
pushdown(u);
int mid = (tr[u].l + tr[u].r) >> 1;
if(r <= mid) return Query(u << 1,l,r);
else if(l > mid) return Query(u << 1 | 1,l,r);
else {
pii a = Query(u << 1,l,mid),b = Query(u << 1 | 1,mid + 1,r);
if(a.fi > b.fi) swap(a,b);
if(a.fi == b.fi) a.se += b.se;
return a;
}
}
void Solve() {
read(N);read(M);
build(1,1,LEN);
for(int i = 1 ; i <= N ; ++i) {
read(a[i]);
a[i] += MAXV;
add(1,a[i] - cnt[a[i]],a[i] - cnt[a[i]],1);
cnt[a[i]]++;
}
int p,x;
for(int i = 1 ; i <= M ; ++i) {
read(p);read(x);
if(p == 0) {
if(x == 1) {
if(cnt[getpos(N)]) {add(1,getpos(N) - cnt[getpos(N)] + 1,getpos(N),-1);}
}
else {
if(cnt[getpos(N + 1)]) {add(1,getpos(N + 1) - cnt[getpos(N + 1)] + 1,getpos(N + 1),1);}
}
d += x;
}
else {
if(a[p] <= getpos(N)) {
add(1,a[p] - cnt[a[p]] + 1,a[p] - cnt[a[p]] + 1,-1);
}
cnt[a[p]]--;
a[p] = x - d + MAXV;
if(a[p] <= getpos(N)) {
add(1,a[p] - cnt[a[p]],a[p] - cnt[a[p]],1);
}
cnt[a[p]]++;
}
pii res = Query(1,getpos(1),getpos(N));
int ans = 0;
if(res.fi == 0) ans = res.se;
out(ans);enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}

【LOJ】#3094. 「BJOI2019」删数的更多相关文章

  1. LOJ 3094 「BJOI2019」删数——角标偏移的线段树

    题目:https://loj.ac/problem/3094 弱化版是 AGC017C . 用线段树维护那个题里的序列即可. 对应关系大概是: 真实值的范围是 [ 1-m , n+m ] :考虑设偏移 ...

  2. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  3. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  4. LOJ 3090 「BJOI2019」勘破神机——斯特林数+递推式求通项+扩域

    题目:https://loj.ac/problem/3090 题解:https://www.luogu.org/blog/rqy/solution-p5320 1.用斯特林数把下降幂化为普通的幂次求和 ...

  5. loj 3090 「BJOI2019」勘破神机 - 数学

    题目传送门 传送门 题目大意 设$F_{n}$表示用$1\times 2$的骨牌填$2\times n$的网格的方案数,设$G_{n}$$表示用$1\times 2$的骨牌填$3\times n$的网 ...

  6. LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划

    题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...

  7. LOJ 3093 「BJOI2019」光线——数学+思路

    题目:https://loj.ac/problem/3093 考虑经过种种反射,最终射下去的光线总和.往下的光线就是这个总和 * a[ i ] . 比如只有两层的话,设射到第二层的光线是 lst ,那 ...

  8. LOJ 3092 「BJOI2019」排兵布阵 ——DP

    题目:https://loj.ac/problem/3092 同一个人的不同城堡之间没有什么联系,只是和<=m.所以对每个城堡的 s 个值排序,做一个 f[ i ][ j ] 表示第 i 个城堡 ...

  9. @loj - 2174@ 「FJOI2016」神秘数

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 一个可重复数字集合 S 的神秘数定义为最小的不能被 S 的子集的 ...

随机推荐

  1. 泛目录程序(莲花泛目录程序/黑帽SEO/寄生虫/莲花泛目录解析/泛目录软件)

    莲花泛目录程序强大之处: 1.内容分类详细2.自动推送URL链接3.内置超强原创内容功能系统,页面深受百度搜索引擎喜爱.4.蜘蛛触发繁殖:蜘蛛触发程序任何页面,程序自动生成独立页面并引导繁殖.5.操作 ...

  2. 点击事件解绑unbind

    $(".choose").unbind("click").click(function(){} 这个类先解绑了点击事件再添加个点击事件有事如果不这样你点击第二次 ...

  3. JavaScript设计模式—适配器模式

    适配器模式介绍 旧接口格式和使用者不兼容,中间加一个适配器转换接口 在生活中,我们有许多的适配器,例如iPhone7以后的耳机接口从3.5mm圆孔接口更改成为了苹果专属的 lightning接口.许多 ...

  4. 6.RabbitMQ--事物

    RabbitMQ之消息确认机制 如何防止消息丢失? 如何防止消息是否正确送达? 有些业务场景需要我们对于消息的幂等性要求是比较高的,需要消息不能丢失,在使用RabbitMQ的时候,我们可以通过消息持久 ...

  5. Leetcode题目236.二叉树的最近公共祖先(中等)

    题目描述: 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p.q,最近公共祖先表示为一个结点 x,满足 x 是 p.q 的祖先 ...

  6. logserver 日志服务项目发布

    logserver是使用logback.light-4j.commons-exec等构建的简单日志服务,参考项目logbackserver和light4j,支持跟踪日志.分页查看.搜索定位.下载文件等 ...

  7. Python中Bool为False的情况

    在python中,以下数值会被认为是False: 为0的数字,包括0,0.0空字符串,包括'', ""表示空值的None空集合,包括(),[],{}其他的值都认为是True. No ...

  8. Python接口测试-以&连接拼接字典数据(get中url请求数据)

    get请求的utl数据是这样的,例如:/banner/findBanner?bannerType=1&_=1556107073181 ''' 1-banner图-banner/findBann ...

  9. 1.springboot启动流程

    SpringBoot版本:2.1.2.RELEASE 1.maven <parent> <groupId>org.springframework.boot</groupI ...

  10. 查看openstack各组件小版本号

    查看api版本号 因为要判断openstack的某个小功能是否支持,需要确定api版本号大于某个版本,故需要查询现有环境api版本号 如查看cinder-api的版本号 指定api版本调api 在he ...