matlab(4) Logistic regression:求θ的值使用fminunc / 画decision boundary(直线)plotDecisionBoundary
画decision boundary(直线)
%% ============= Part 3: Optimizing using fminunc =============
% In this exercise, you will use a built-in function (fminunc) to find the
% optimal parameters theta.
% Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400); %设置一些选择项,GradObj,on:表示计算过程中需要的计算gradient;MaxIter,400表示最多迭代次数为400
% Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options); %调用matlab的自带的函数fminunc, @(t)(costFunction(t, X, y))创建一个function,参数为t,调用前面写的 costFunction函数
返回求得最优解后的theta和cost
% Print theta to screen
fprintf('Cost at theta found by fminunc: %f\n', cost);
fprintf('theta: \n');
fprintf(' %f \n', theta);
% Plot Boundary
plotDecisionBoundary(theta, X, y); %调用plotDecisionBoundary函数
% Put some labels
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score')
% Specified in plot order
legend('Admitted', 'Not admitted')
hold off;
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
plotDecisionBoundary.m
function plotDecisionBoundary(theta, X, y)
%PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
%the decision boundary defined by theta
% PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the
% positive examples and o for the negative examples. X is assumed to be
% a either
% 1) Mx3 matrix, where the first column is an all-ones column for the
% intercept.
% 2) MxN, N>3 matrix, where the first column is all-ones
% Plot Data
plotData(X(:,2:3), y); %调用前面写的plotData函数,参见plotData.m
hold on
if size(X, 2) <= 3 %size(X,2)表示X的列数,包括X最前面的一列1(an all-ones column for the intercept)
% Only need 2 points to define a line, so choose two endpoints % decision boundary为一条直线,画直线只需要两点就可以
plot_x = [min(X(:,2))-2, max(X(:,2))+2];
% Calculate the decision boundary line
plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1)); %求plot_y(x2) 矩阵和标量相加减(theta(2).*plot_x + theta(1))实质是矩阵每个元素与该标量相加减
% Plot, and adjust axes for better viewing
plot(plot_x, plot_y) %调用系统的plot函数,plot_x,plot_y均为1*2矩阵
% Legend, specific for the exercise
legend('Admitted', 'Not admitted', 'Decision Boundary')
axis([30, 100, 30, 100]) %设置X轴与Y轴的范围
else %decision boundary不是一条直线(如为一个圆)时, size(X, 2) > 3
% Here is the grid range
u = linspace(-1, 1.5, 50); %linearly spaced vector.在-1到1.5之间产生50个间距相等的点(包括-1与1.5这两个点),u为行向量.
v = linspace(-1, 1.5, 50);
z = zeros(length(u), length(v));
% Evaluate z = theta*x over the grid
for i = 1:length(u)
for j = 1:length(v)
z(i,j) = mapFeature(u(i), v(j))*theta;
end
end
z = z'; % important to transpose z before calling contour
% Plot z = 0
% Notice you need to specify the range [0, 0]
contour(u, v, z, [0, 0], 'LineWidth', 2)
end
hold off
end
mapFeature.m
function out = mapFeature(X1, X2)
% MAPFEATURE Feature mapping function to polynomial features
%
% MAPFEATURE(X1, X2) maps the two input features
% to quadratic features used in the regularization exercise.
%
% Returns a new feature array with more features, comprising of
% X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc..
%
% Inputs X1, X2 must be the same size
%
degree = 6;
out = ones(size(X1(:,1)));
for i = 1:degree
for j = 0:i
out(:, end+1) = (X1.^(i-j)).*(X2.^j);
end
end
end
matlab(4) Logistic regression:求θ的值使用fminunc / 画decision boundary(直线)plotDecisionBoundary的更多相关文章
- matlab(3) Logistic Regression: 求cost 和gradient \ 求sigmoid的值
sigmoid.m文件 function g = sigmoid(z)%SIGMOID Compute sigmoid functoon% J = SIGMOID(z) computes the si ...
- matlab(2) Logistic Regression: 画出样本数据点plotData
画出data数据 data数据 34.62365962451697,78.0246928153624,030.28671076822607,43.89499752400101,035.84740876 ...
- 机器学习-- Logistic回归 Logistic Regression
转载自:http://blog.csdn.net/linuxcumt/article/details/8572746 1.假设随Tumor Size变化,预测病人的肿瘤是恶性(malignant)还是 ...
- matlab(8) Regularized logistic regression : 不同的λ(0,1,10,100)值对regularization的影响,对应不同的decision boundary\ 预测新的值和计算模型的精度predict.m
不同的λ(0,1,10,100)值对regularization的影响\ 预测新的值和计算模型的精度 %% ============= Part 2: Regularization and Accur ...
- Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...
- matlab(7) Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg
Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg ex2_reg.m文件中的部分内容 %% == ...
- matlab(6) Regularized logistic regression : plot data(画样本图)
Regularized logistic regression : plot data(画样本图) ex2data2.txt 0.051267,0.69956,1-0.092742,0.68494, ...
- logistic regression的一些问题,不平衡数据,时间序列,求解惑
Logistic Regression 1.在有时间序列的特征数据中,怎么运用LR? 不光是LR,其他的模型也是. 有很多基本的模型变形之后,变成带时序的模型.但,个人觉得,这类模型大多不靠谱. 我觉 ...
- Machine Learning - 第3周(Logistic Regression、Regularization)
Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...
随机推荐
- Qt qml的软件架构设计
google: qt qml application architecture 有很多资源. 1 https://www.ics.com/blog/multilayered-architecture- ...
- Net Core 3 Mvc AliPay Demo
AliPay - PC 钻研了几天的Webpack, 这几天回归了我的本行.Net, 跟随大佬的脚步, 开始做上了支付宝的支付. 创建项目 首先创建一基于.Net Core3.0的MVC项目, 然后引 ...
- 【剑指offer】面试题 42. 连续子数组的最大和
面试题 42. 连续子数组的最大和 NowCoder 题目描述 输入一个整型数组,数组里有正数也有负数.数组中一个或连续的多个整数组成一个子数组.求所有子数组的和的最大值. 示例: 输入: [-2,1 ...
- Convolutional neural network (CNN) - Pytorch版
import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms # ...
- [转帖]Redis未授权访问漏洞复现
Redis未授权访问漏洞复现 https://www.cnblogs.com/yuzly/p/11663822.html config set dirconfig set dbfile xxxx 一. ...
- php实现映射
目录 映射 实现 链表实现: 二叉树实现 复杂度分析 映射 映射,或者射影,在数学及相关的领域经常等同于函数.基于此,部分映射就相当于部分函数,而完全映射相当于完全函数. 映射(Map)是用于存取键值 ...
- 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?
package com.hadoop.hdfs; import org.apache.hadoop.yarn.webapp.hamlet.Hamlet; import org.junit.Test; ...
- STM32之串口硬件连接图
笔记本USB转串口实物连接图: 电路连接图:
- Shell之监控cpu、内存、磁盘脚本
#!/bin/bash #获取内存情况 mem_total=`free | awk 'NR==2{print $2}'` #获取内存总大小 mem_use=`free | awk 'NR==2{pri ...
- Practice
一.简介 Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中.其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的 ...