F. SUM and REPLACE

time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

Let D(x) be the number of positive divisors of a positive integer x. For example, D(2) = 2 (2 is divisible by 1 and 2), D(6) = 4 (6 is divisible by 1, 2, 3 and 6).

You are given an array a of n integers. You have to process two types of queries:

REPLACE l r — for every replace ai with D(ai);

SUM l r — calculate .

Print the answer for each SUM query.

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 3·105) — the number of elements in the array and the number of queries to process, respectively.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 106) — the elements of the array.

Then m lines follow, each containing 3 integers ti, li, ri denoting i-th query. If ti = 1, then i-th query is REPLACE li ri, otherwise it's SUM li ri (1 ≤ ti ≤ 2, 1 ≤ li ≤ ri ≤ n).

There is at least one SUM query.

Output

For each SUM query print the answer to it.

Example

inputCopy

7 6

6 4 1 10 3 2 4

2 1 7

2 4 5

1 3 5

2 4 4

1 5 7

2 1 7

outputCopy

30

13

4

22

https://codeforces.com/contest/920/problem/F

题意:

给你一个含有n个数的数组,和m个操作

操作1:将l~r中每一个数\(a[i]\)变成 \(d(a[i])\)

​ 其中$ d(x)$ 是约数个数函数。

操作2: 求l~r的a[i] 的sum和。

思路:

$ d(x)$ 约数个数函数可以利用线性筛预处理处理。

又因为 \(d(2)=2\) 和 \(d(1)=1\) 操作1对a[i]等于1或者2没有影响。

那么我们可以对一个区间中全都是1或者2不更新操作。

同时 \(d(x)\) 是收敛函数, 在1e6 的范围内,最多不超过5次改变就会收敛到1或2.

所以更新操作可以暴力解决,

同时用线段树维护即可。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
// d(n)表示n的约数个数和
// prime[i]表示第i个质数
//num[i]表示i的最小质因子出现次数
int sshu[maxn];
int N = maxn;
int num[maxn];
int d[maxn];
bool no[maxn];
int tot;
void prepare()
{
d[1] = 1; num[1] = 1;
for (int i = 2; i < N; i++) {
if (!no[i]) {
sshu[++tot] = i;
d[i] = 2; num[i] = 1;
}
for (int j = 1; j <= tot && sshu[j]*i < N; j++) {
int v = sshu[j] * i;
no[v] = 1;
if (i % sshu[j] == 0) {
num[v] = num[i] + 1;
d[v] = d[i] / num[v] * (num[v] + 1);
break;
}
d[v] = d[i] << 1; num[v] = 1;
}
}
//for (int i=1;i<=10;i++) printf("%d\n",d[i]);
}
int a[maxn];
struct node {
int l, r;
int laze;
bool isall;
ll num;
} segment_tree[maxn << 2]; void pushup(int rt)
{
segment_tree[rt].num = segment_tree[rt << 1].num + segment_tree[rt << 1 | 1].num;
segment_tree[rt].isall = segment_tree[rt << 1].isall & segment_tree[rt << 1 | 1].isall;
}
void build(int rt, int l, int r)
{
segment_tree[rt].l = l;
segment_tree[rt].r = r;
if (l == r) {
segment_tree[rt].num =a[l];
if (segment_tree[rt].num == 1 || segment_tree[rt].num == 2) {
segment_tree[rt].isall = 1;
}
return ;
}
int mid = (l + r) >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
pushup(rt);
} void update(int rt, int l, int r)
{
if (l <= segment_tree[rt].l && r >= segment_tree[rt].r && segment_tree[rt].isall) {
return;
}
if (segment_tree[rt].l == segment_tree[rt].r) {
segment_tree[rt].num = d[segment_tree[rt].num];
if (segment_tree[rt].num == 1 || segment_tree[rt].num == 2) {
segment_tree[rt].isall = 1;
}
return ;
} else {
int mid = (segment_tree[rt].l + segment_tree[rt].r) >> 1;
if (mid >= l) {
update(rt << 1, l, r);
}
if (mid < r) {
update(rt << 1 | 1, l, r);
}
pushup(rt);
}
}
ll query(int rt, int l, int r)
{
if (segment_tree[rt].l >= l && segment_tree[rt].r <= r) {
ll res = 0ll;
res += segment_tree[rt].num;
return res;
}
int mid = (segment_tree[rt].l + segment_tree[rt].r) >> 1;
ll res = 0ll;
if (mid >= l) {
res += query(rt << 1, l, r);
}
if (mid < r) {
res += query(rt << 1 | 1, l, r);
}
return res; }
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
prepare();
int n, m;
du2(n, m);
repd(i, 1, n) {
du1(a[i]);
}
build(1, 1, n);
repd(i, 1, m) {
int op; int l, r;
du3(op, l, r);
if (op == 1) {
update(1, l, r);
} else {
printf("%lld\n", query(1, l, r));
}
}
return 0;
} inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}  

Educational Codeforces Round 37-F.SUM and REPLACE (线段树,线性筛,收敛函数)的更多相关文章

  1. 【Educational Codeforces Round 37】F. SUM and REPLACE 线段树+线性筛

    题意 给定序列$a_n$,每次将$[L,R]$区间内的数$a_i$替换为$d(a_i)$,或者询问区间和 这题和区间开方有相同的操作 对于$a_i \in (1,10^6)$,$10$次$d(a_i) ...

  2. Educational Codeforces Round 23 F. MEX Queries 离散化+线段树

    F. MEX Queries time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. 【Educational Codeforces Round 37 F】SUM and REPLACE

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 那个D函数它的下降速度是很快的. 也就是说到最后他会很快的变成2或者1 而D(2)==2,D(1)=1 也就是说,几次操作过后很多数 ...

  4. Educational Codeforces Round 64 (Rated for Div. 2) (线段树二分)

    题目:http://codeforces.com/contest/1156/problem/E 题意:给你1-n  n个数,然后求有多少个区间[l,r] 满足    a[l]+a[r]=max([l, ...

  5. Educational Codeforces Round 37

    Educational Codeforces Round 37 这场有点炸,题目比较水,但只做了3题QAQ.还是实力不够啊! 写下题解算了--(写的比较粗糙,细节或者bug可以私聊2333) A. W ...

  6. Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements (思维,前缀和)

    Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements time limit per test 1 se ...

  7. Educational Codeforces Round 40 F. Runner's Problem

    Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...

  8. Educational Codeforces Round 37 A B C D E F

    A. water the garden Code #include <bits/stdc++.h> #define maxn 210 using namespace std; typede ...

  9. codeforces 920 EFG 题解合集 ( Educational Codeforces Round 37 )

    E. Connected Components? time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  10. [Codeforces]Educational Codeforces Round 37 (Rated for Div. 2)

    Water The Garden #pragma comment(linker, "/STACK:102400000,102400000") #include<stdio.h ...

随机推荐

  1. RestHighLevelClient 之 Scroll

    ES中默认最大查询结果为10000,大于10000时查不出结果,报错超过最大值,如把 from调到大于10000. 针对这个问题,有两种解决办法. 第一种,修改 max_result_window 很 ...

  2. Matlab JPEG详细介绍

    作为一个基本的图像压缩方式,JPEG 已经得到了广泛的运用,但 JPEG 相关的基本原理,却经常被忽视,或解释得很不确切.这里我们详细讨论一下 JPEG 的编码原理,并结合实例来给出一个更加感性的认识 ...

  3. spring中@Conditional注解

    @Conditional是Spring4新提供的注解,它的作用是根据某个条件加载特定的bean. 我们需要创建实现类来实现Condition接口,这是Condition的源码 public inter ...

  4. 前端手势控制图片插件书写三(将transform变化应用在图片和canvas画布上)

    注意:transform的scale为负数时,图片会垂直翻转 一.在使用transform将计算得到的变化应用到图片上后,需要考虑到我们每次计算的都是touchmove中本次的差量.在第一次移动过后. ...

  5. Linux 工作管理 (job control)

    fg , bg 有时,命令需要很长的时间才能执行完成.对于这种情况,我们使用‘bg’命令可以将任务放在后台执行,而用‘fg’可以调到前台来使用. 我们可以通过‘&’在后台启动一个程序: fin ...

  6. 洛谷 题解 P4158 【[SCOI2009]粉刷匠】

    状态: dp[i][j][k][0/1]: 到达第i行时, 到达第j列时, 刷到第k次时, 这一格有没有刷对 转移 换一块木板时肯定要多刷一次 dp[i][j][k][0]=max(dp[i-1][m ...

  7. 《MIT 6.828 Lab 1 Exercise 7》实验报告

    本实验链接:mit 6.828 lab1 Exercise 7. 题目 Exercise 7. Use QEMU and GDB to trace into the JOS kernel and st ...

  8. 葡萄城首席架构师:前端开发与Web表格控件技术解读

    讲师:Issam Elbaytam,葡萄城集团全球首席架构师(Chief Software Architect of GrapeCity Global).曾任 Data Dynamics.Inc 创始 ...

  9. DDL数据库对象管理

    DDL数据库对象管理 约束的分类: 主键约束:primary key 要求主键列数据唯一,并且不允许为空. 外键约束:foreign key 用于在两表之间建立关系,需要指定引用主表的哪一列. 检查约 ...

  10. Ural 1250 Sea Burial 题解

    目录 Ural 1250 Sea Burial 题解 题意 输入 题解 程序 Ural 1250 Sea Burial 题解 题意 给定一个\(n\times m\)的地图,\(.\)为水,\(\#\ ...