LeetCode.1137-第N个泰波那契数(N-th Tribonacci Number)
这是小川的第409次更新,第441篇原创
看题和准备
今天介绍的是LeetCode算法题中Easy级别的第260题(顺位题号是1137)。Tribonacci(泰波那契)序列Tn
定义如下:
对于n> = 0,T0 = 0,T1 = 1,T2 = 1,并且T(n+3) = T(n) + T(n+1) + T(n+2)
。
给定n
,返回Tn
的值。
例如:
输入:n = 4
输出:4
说明:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4
输入:n = 25
输出:1389537
注意:
0 <= n <= 37
答案保证小于32位整数,即 答案 <= 231 - 1。
第一种解法
泰波那契,和斐波那契数列相似,只是比斐波那契数列多了一项,后一项的值为前三项的值之和。
暴力解法,直接使用递归,会超时。
public int tribonacci(int n) {
if (n <= 2) {
return n == 0 ? 0 : 1;
}
return tribonacci(n-1)+tribonacci(n-2)+tribonacci(n-3);
}
第二种解法
在第一种解法中,使用了递归,虽然代码变简单了,但是多了许多重复计算,比如T(4) = T(3)+T(2)+T(1) = T(0)+T(1)+T(2)+T(2)+T(1)
,只是计算n
为4时,就计算了两次n
为0和n
为1,当n
更大时,重复的计算会严重影响代码计算速度。
我们可以使用数组,将每一步的计算结果都保存起来,当新的一项需要前面三项的计算结果时,可以直接从数组中取,减少不必要的重复计算。
此解法的时间复杂度是O(N)
,空间复杂度为O(N)
,使用了一个容量为n+1
的数组。
public int tribonacci2(int n) {
if (n <= 2) {
return n == 0 ? 0 : 1;
}
int[] arr = new int[n+1];
arr[1] = arr[2] = 1;
for (int i=3, len=arr.length; i<len; i++) {
arr[i] = arr[i-1]+arr[i-2]+arr[i-3];
}
return arr[n];
}
第三种解法
在第二种解法的基础上,我们还可以继续优化。
泰波那契数列中,新的一项需要借助前三项的值得到,例如T(6) = T(5)+T(4)+T(3)
,在第二种解法中,我们却将T(0)
、T(1)
、T(2)
的值都存起来了,但是计算T(6)又用不到T(0)
、T(1)
、T(2)
,浪费了存储空间。对此,我们可以使用局部变量替换数组,只保留前三项的值,每次计算完新的一项值后,更新一次前三项的值即可。
此解法的时间复杂度是O(N)
,空间复杂度为O(1)
,只使用了4个局部变量。
public int tribonacci3(int n) {
if (n <= 2) {
return n == 0 ? 0 : 1;
}
int T0 = 0, T1 = 1, T2 = 1;
int temp = 0;
for (int i=3; i<n+1; i++) {
temp = T0 + T1 + T2;
T0 = T1;
T1 = T2;
T2 = temp;
}
return temp;
}
小结
算法专题目前已更新LeetCode算法题文章266+篇,公众号对话框回复【数据结构与算法】、【算法】、【数据结构】中的任一关键词,获取系列文章合集。
以上就是全部内容,如果大家有什么好的解法思路、建议或者其他问题,可以下方留言交流,点赞、留言、转发就是对我最大的回报和支持!
LeetCode.1137-第N个泰波那契数(N-th Tribonacci Number)的更多相关文章
- 刷题-力扣-1137. 第 N 个泰波那契数
1137. 第 N 个泰波那契数 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/n-th-tribonacci-number 著作权 ...
- 1137. 第 N 个泰波那契数
1137. 第 N 个泰波那契数 泰波那契序列 Tn 定义如下: T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2 给 ...
- LeetCode.509——斐波那契数
问题描述: 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) ...
- 力扣(LeetCode) 509. 斐波那契数
斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = F(N ...
- 【LeetCode】509. 斐波那契数
题目 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = ...
- Java实现 LeetCode 509 斐波那契数
509. 斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 ...
- leetcode 509. 斐波那契数
问题描述 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) ...
- [Swift]LeetCode509. 斐波那契数 | Fibonacci Number
The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such th ...
- UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数
大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...
随机推荐
- jquery之闭包
闭包 常见形式是函数A里面定义一个函数B,并返回函数体的引用,很抽象是不是,具体代码如下: function wenwa() { ; function cj() { console.log(" ...
- Oracle之:查询锁表,删除锁表
-- 查询当前哪个表被锁 select sess.sid, sess.serial#, lo.oracle_username, lo.os_user_name, ao.object_name, lo. ...
- SpringBoot中注入RedisTemplate实例异常解决(转)
最近,在项目开发过程中使用了RedisTemplate,进行单元测试时提示“Field redisTemplate in com.example.demo1.dao.RedisDao required ...
- ListView如何添加数据如何不闪烁
public class DoubleBufferListView : ListView { public DoubleBufferListView() ...
- vue模板语法下集
1. 样式绑定 1.1 class绑定 使用方式:v-bind:class="expression" expression的类型:字符串.数组.对象 1.2 style绑定 v-b ...
- Windows下如何禁止优盘自动播放、自动运行
造冰箱的大熊猫@cnblogs 2019/1/28 为了防范层出不穷的病毒和木马,如何禁止插入优盘后Windows自动播放优盘或运行优盘程序? 运行环境:Windows 7 1)点击Windows开 ...
- python中reversed()函数的用法
reversed(a) # 返回一个反转的迭代器 举例 a = [1, 2, 3, 4, 5] b = reversed(a) # b是一个迭代器 # print(list(b)) = [5, 4, ...
- selenium.common.exceptions.StaleElementReferenceException: Message: stale element reference: element is not attached to the page document
抓取网页代码后,由于是在同一个li标签下,所以使用一次性抓取,所有的a标签,然后循环做不同的操作,但是抛出找不到元素异常. def office_page(_chrome: Chrome): sn = ...
- SSH端口转发详解
正文 一.SSH端口转发简介 SSH会自动加密和解密所有SSH客户端与服务端之间的网络数据.但是,SSH还能够将其他TCP端口的网络数据通SSH链接来转发,并且自动提供了相应的加密及解密服务.这一过程 ...
- 遍历 ArrayList与Map集合
import java.util.ArrayList; import java.util.Iterator; import java.util.List; /** * 遍历 ArrayList * @ ...