题意

一颗基环树,选一对点使得这两个点的最短距离最大。

题解

相当于找基环树的直径,但是这个直径不是最长链,是基环树上的最短距离。

然后不会做。

然后看了ljh_2000的博客。

然后会了。

这道题最难的就是为什么枚举断边(i→i+1)(i\to i+1)(i→i+1)后,求出最长链是取min⁡\minmin。实际上是因为这个最长链是求的经过了环的最长链,但是经过了环的最长链不一定是题目中要求的最短距离,所以枚举断边取min⁡\minmin就是为了取小的那一段,而且一定不会错过答案。

.

CODE

听说CF835F的数据强点。不过要改一下输出和数据范围。

#pragma GCC optimize (3)
#include <bits/stdc++.h>
using namespace std;
char cb[1<<15],*cs=cb,*ct=cb;
#define getc() (cs==ct&&(ct=(cs=cb)+fread(cb,1,1<<15,stdin),cs==ct)?0:*cs++)
void read(int &res){
char ch; for(;!isdigit(ch=getchar()););
for(res=ch-'0';isdigit(ch=getchar());res=res*10+ch-'0');
}
typedef long long LL;
const int MAXN = 100005;
int n, seq[MAXN], stk[MAXN], indx, m;
bool inq[MAXN], vis[MAXN], flg[MAXN];
int fir[MAXN], to[MAXN<<1], nxt[MAXN<<1], wt[MAXN<<1], cnt = 1;
inline void link(int u, int v, int w) {
to[++cnt] = v; nxt[cnt] = fir[u]; fir[u] = cnt; wt[cnt] = w;
to[++cnt] = u; nxt[cnt] = fir[v]; fir[v] = cnt; wt[cnt] = w;
}
void dfs(int u, int ff) {
vis[u] = inq[u] = 1; stk[++indx] = u;
for(int i = fir[u], v; i; i = nxt[i])
if((i^1) != ff) {
if(!vis[v = to[i]]) dfs(v, i);
else {
if(inq[v]) {
for(int i = indx; i; --i) {
flg[seq[++m] = stk[i]] = 1;
if(stk[i] == v) break;
}
}
}
}
inq[u] = 0; --indx;
}
LL dp[MAXN], chain;
LL DP(int u, int ff) {
for(int i = fir[u], v; i; i = nxt[i])
if((v=to[i]) != ff && !flg[v]) {
chain = max(chain, dp[u] + DP(v, u) + wt[i]);
dp[u] = max(dp[u], dp[v] + wt[i]);
}
return dp[u];
}
LL val[MAXN], len[MAXN];
LL pre[MAXN], f[MAXN];
LL suf[MAXN], g[MAXN];
int main () {
//freopen("shuju.in", "r", stdin);
read(n);
for(int i = 1, u, v, w; i <= n; ++i) read(u), read(v), read(w), link(u, v, w);
dfs(1, 0);
for(int i = 1; i <= m; ++i) {
val[i] = DP(seq[i], 0);
for(int j = fir[seq[i]]; j; j = nxt[j])
if(to[j] == seq[i%m+1]) len[i] = wt[j];
}
LL sum = 0, mx = 0;
for(int i = 1; i <= m; ++i) {
pre[i] = max(pre[i-1], sum + val[i]);
f[i] = max(f[i-1], sum + mx + val[i]);
mx = max(mx, val[i]-sum);
sum += len[i];
}
sum = 0; mx = 0;
for(int i = m; i >= 1; --i) {
suf[i] = max(suf[i+1], sum + val[i]);
g[i] = max(g[i+1], sum + mx + val[i]);
mx = max(mx, val[i]-sum);
sum += len[i-1];
}
LL ans = f[m];
for(int i = 1; i < m; ++i)
ans = min(ans, max(pre[i] + suf[i+1] + len[m], max(f[i], g[i+1])));
ans = max(ans, chain);
if(ans & 1) printf("%lld.5\n", ans/2);
else printf("%lld.0\n", ans/2);
}

[NOI2013]快餐店 / CF835F Roads in the Kingdom (基环树)的更多相关文章

  1. CF835F Roads in the Kingdom/UOJ126 NOI2013 快餐店 树的直径

    传送门--CF 传送门--UOJ 题目要求基环树删掉环上的一条边得到的树的直径的最小值. 如果直接考虑删哪条边最优似乎不太可做,于是考虑另一种想法:枚举删掉的边并快速地求出当前的直径. 对于环上的点, ...

  2. CF835F Roads in the Kingdom

    话说这是去年大爷的一道NOIP模拟赛题,对着大爷的代码看了一堂课的我终于把这题写掉了. 本题要求在基环树给定的环上删去一条边使剩下的树的直径最小,输出这个最小直径. 那么基环树可以画成这样子的: 有一 ...

  3. Codeforces 835 F. Roads in the Kingdom

    \(>Codeforces\space835 F. Roads in the Kingdom<\) 题目大意 : 给你一棵 \(n\) 个点构成的树基环树,你需要删掉一条环边,使其变成一颗 ...

  4. bzoj3242 [Noi2013]快餐店

    Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...

  5. P1399 [NOI2013] 快餐店 方法记录

    原题题面P1399 [NOI2013] 快餐店 题目描述 小 T 打算在城市 C 开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小 T 希望快餐店的地址选在离最 ...

  6. bzoj 3242: [Noi2013]快餐店 章鱼图

    3242: [Noi2013]快餐店 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 266  Solved: 140[Submit][Status] ...

  7. Codeforces 835 F Roads in the Kingdom(树形dp)

    F. Roads in the Kingdom(树形dp) 题意: 给一张n个点n条边的无向带权图 定义不便利度为所有点对最短距离中的最大值 求出删一条边之后,保证图还连通时不便利度的最小值 $n & ...

  8. codeforces 427 div.2 F. Roads in the Kingdom

    F. Roads in the Kingdom time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  9. Codeforces 835F Roads in the Kingdom (环套树 + DP)

    题目链接 Roads in the Kingdom 题意  给出一个环套树的结构,现在要删去这个结构中的一条边,满足所有点依然连通. 删边之后的这个结构是一棵树,求所有删边情况中树的直径的最小值. 显 ...

随机推荐

  1. [转帖]nginx sendfile tcp_nopush tcp_nodelay参数解释

    nginx sendfile tcp_nopush tcp_nodelay参数解释 2013-06-25 13:59:40 zmj_88888888 阅读数 20425 文章标签: nginxtcp_ ...

  2. python第一天---我要入个门

    """ 一个用户登录的案例 """ # 永远等待,直到用户输入值 # 变量 name_r = input("请输入用户名" ...

  3. PAT(B) 1071 小赌怡情(Java)

    题目链接:1071 小赌怡情 (15 point(s)) 题目描述 常言道"小赌怡情".这是一个很简单的小游戏:首先由计算机给出第一个整数:然后玩家下注赌第二个整数将会比第一个数大 ...

  4. springboot调用mongo

    目录 添加 删除 文档操作更新 简单聚合操作 count, distinct 普通查询 分组 group Aggregate mapReduce 分页查询 文件上传 文件下载 随便测试了一下,有问题请 ...

  5. Generator 实现

    Generator 是 ES6 中新增的语法,和 Promise 一样,都可以用来异步编程 // 使用 * 表示这是一个 Generator 函数 // 内部可以通过 yield 暂停代码 // 通过 ...

  6. shellexecute的使用和X64判断

    bool RunConsoleAsAdmin(std::string appPath, std::string param, bool wait) { LOG_INFO << " ...

  7. VS2015按钮方法

    protected void btnRoleMemberAdd_Click(object sender ,EventArgs e) { txtEmpID.Text=Coeno.utility.stri ...

  8. .net core使用CSRedisCore连接哨兵集群,并用作redis使用分布式缓存。

    CSRedisCore是国内大佬出品的一个Redis-Cli-SDK. Github地址:https://github.com/2881099/csredis 使用此插件作为分布式缓存也十分简单. 一 ...

  9. Centos6 Connect WiFi

    Centos6 Connect WiFi // 安装 wireless tools yum install wireless-tools dkms pciutils lsusb // 使用wlan命令 ...

  10. mysql各版本驱动

    http://central.maven.org/maven2/mysql/mysql-connector-java/5.1.9/