Cogs 728. [网络流24题] 最小路径覆盖问题
- [网络流24题] 最小路径覆盖问题
★★☆ 输入文件:path3.in 输出文件:path3.out 评测插件
时间限制:1 s 内存限制:128 MB
算法实现题8-3 最小路径覆盖问题(习题8-13)
´问题描述:
给定有向图G=(V,E)。设P是G的一个简单路(顶点不相交)的集合。如果V中每个
顶点恰好在P的一条路上,则称P是G的一个路径覆盖。P中路径可以从V的任何一个顶
点开始,长度也是任意的,特别地,可以为0。G的最小路径覆盖是G的所含路径条数最少
的路径覆盖。
设计一个有效算法求一个有向无环图G的最小路径覆盖。
提示:
设V={1,2,… ,n},构造网络G1=(V1,E1)如下:
每条边的容量均为1。求网络G1的(x0,y0)最大流。
´编程任务:
对于给定的给定有向无环图G,编程找出G的一个最小路径覆盖。
´数据输入:
由文件input.txt提供输入数据。文件第1行有2个正整数n和m。n是给定有向无环图
G的顶点数,m是G的边数。接下来的m行,每行有2个正整数i 和j,表示一条有向边(i,j)。
´结果输出:
程序运行结束时,将最小路径覆盖输出到文件output.txt中。从第1行开始,每行输出
一条路径。文件的最后一行是最少路径数。
输入文件示例
input.txt
11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11
输出文件示例
output.txt
1 4 7 10 11
2 5 8
3 6 9
3
数据范围:
1<=n<=150,1<=m<=6000
/*
最小路径覆盖数=V-最大流.
然后拆点建图.
搞一个超级源点和汇点跑dinic.
输出的时候在残余网络里找贡献边.
恩就是这样.
*/
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#define MAXN 10001
using namespace std;
struct data{int v,next,c;}e[MAXN*4];
int n,m,max1=1e9,ans,tot,cut=1,dis[MAXN*2],head[MAXN*2],next[MAXN*2];
bool in[MAXN*2];
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void add(int u,int v,int x)
{
e[++cut].v=v;
e[cut].c=x;
e[cut].next=head[u];
head[u]=cut;
}
bool bfs()
{
memset(dis,-1,sizeof dis);
queue<int>q;
q.push(0);
dis[0]=0;
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].v;
if(dis[v]==-1&&e[i].c)
{
dis[v]=dis[u]+1;
q.push(v);
}
}
}
return dis[n*2+1]!=-1;
}
int dfs(int u,int y)
{
if(u==n*2+1) return y;
int rest=0;
for(int i=head[u];i&&rest<y;i=e[i].next)
{
int v=e[i].v;
if(dis[v]==dis[u]+1&&e[i].c)
{
int x=dfs(v,min(e[i].c,y-rest));
rest+=x;
e[i].c-=x;
e[i^1].c+=x;
}
}
if(!rest) dis[u]=-1;
return rest;
}
void print()
{
for(int u=1;u<=n;u++)
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].v;
if(e[i].c==max1-1) in[v-n]=true,next[u]=v-n;
}
for(int i=1;i<=n;i++)
{
int x=i;
if(!in[x])
{
while(x) printf("%d ",x),x=next[x];
printf("\n");
}
}
}
void dinic(int s,int t)
{
while(bfs()) ans+=dfs(s,max1);
print();
printf("%d\n",n-ans);
return ;
}
int main()
{
freopen("path3.in","r",stdin);
freopen("path3.out","w",stdout);
int x,y;
n=read(),m=read();
for(int i=1;i<=n;i++) add(0,i,1),add(i,0,0);
for(int i=1;i<=n;i++) add(i+n,n*2+1,1),add(2*n+1,i+n,0);
for(int i=1;i<=m;i++)
{
x=read(),y=read();
add(x,y+n,max1),add(y+n,x,0);
}
dinic(0,n*2+1);
return 0;
}
Cogs 728. [网络流24题] 最小路径覆盖问题的更多相关文章
- cogs 728. [网络流24题] 最小路径覆盖问题 匈牙利算法
728. [网络流24题] 最小路径覆盖问题 ★★★☆ 输入文件:path3.in 输出文件:path3.out 评测插件时间限制:1 s 内存限制:128 MB 算法实现题8-3 最 ...
- COGS728. [网络流24题] 最小路径覆盖问题
算法实现题8-3 最小路径覆盖问题(习题8-13) ´问题描述: 给定有向图G=(V,E).设P是G的一个简单路(顶点不相交)的集合.如果V中每个顶点恰好在P的一条路上,则称P是G的一个路径覆盖.P中 ...
- 网络流24题 最小路径覆盖(DCOJ8002)
题目描述 给定有向图 G=(V,E) G = (V, E)G=(V,E).设 P PP 是 G GG 的一个简单路(顶点不相交)的集合.如果 V VV 中每个顶点恰好在 P PP 的一条路上,则称 P ...
- P2764 [网络流24题]最小路径覆盖问题[最大流]
地址 这题有个转化,求最少的链覆盖→即求最少联通块. 设联通块个数$x$个,选的边数$y$,点数$n$个 那么有 $y=n-x$ 即 $x=n-y$ 而n是不变的,目标就是在保证每个点入度.出度 ...
- cogs 14. [网络流24题] 搭配飞行员 二分图最大匹配 匈牙利算法
14. [网络流24题] 搭配飞行员 ★★ 输入文件:flyer.in 输出文件:flyer.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] 飞行大队有 ...
- 【wikioi】1904 最小路径覆盖问题(最大流+坑人的题+最小路径覆盖)
http://wikioi.com/problem/1904/ 这题没看数据的话是一个大坑(我已报告官方修复了),答案只要求数量,不用打印路径...orz 最小路径覆盖=n-最大匹配,这个我在说二分图 ...
- 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】
P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...
- Cogs 461. [网络流24题] 餐巾(费用流)
[网络流24题] 餐巾 ★★★ 输入文件:napkin.in 输出文件:napkin.out 简单对比 时间限制:5 s 内存限制:128 MB [问题描述] 一个餐厅在相继的N天里,第i天需要Ri块 ...
- Cogs 734. [网络流24题] 方格取数问题(最大闭合子图)
[网络流24题] 方格取数问题 ★★☆ 输入文件:grid.in 输出文件:grid.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: 在一个有m*n 个方格的棋盘中,每个方格 ...
随机推荐
- 初识php语法
初到一家php公司,由于之前做的java,现在记录一些学习php中的语法细节. =>的用法 => 是数组成员访问符号.在php中数组默认键名是整数,也可以自己定义任意字符键名(最好是有实际 ...
- F12的用法
F12在Web测试中十分重要,可以定位元素(UI自动化常用),查看网页响应时间/数据(定位BUG,测单页面响应时间→性能) Elements 点击这个按钮,将光标移至“Google”图片位置并点击,右 ...
- c# 自定义解析JSON字符串数据
解析json字符串有很多方式, 1 : 在网上下载json解析的dll类库并添加引用, 调用相关方法; 2 : 使用自带类库JavaScriptSerializer的序列号和反序列化; 对于以上两个方 ...
- Install CUDA 6.0 on Ubuntu 14.04 LTS
Ubuntu 14.04 LTS is out, loads of new features have been added. Here are some procedures I followed ...
- lamp :在Linux 下搭建apache、Mysql、php
CentOS下搭建LAMP环境 LAMP: Linux + Apache + PHP + Mysql. 系统: CentOS 7,64位. CentOS安装 我选取了64位的CentOS 7这个Lin ...
- Git详细操作
Git详细操作 一.本地配置 1公钥钥配置 1.参考帮助文档:https://gitee.com/help/ 仓库管理 =公钥管理 =生成/添加SSH公钥 ssh-keygen -t rsa -C & ...
- 【PR笔记】一、打造希区柯克变焦效果
1. 导入素材,“链接选择项”关闭,删除音频 2. 添加效果--视频效果--扭曲--视频稳定器, 然后程序帮我们自动稳定 3.视频首尾添加关键帧,首帧缩放200% 尾帧不变, 使视频前后的主体大小差 ...
- react hooks学习
接触React项目快两个月了,还在研究摸索各种知识点的过程中,充实且幸福. 在项目中学习新知识,还是很有效率的,一边写项目,一边实验新的知识点,比如react hooks!嘻嘻嘻~~~ 写了好一段时间 ...
- Node.js Express项目搭建
讲干货,不啰嗦,Express 是一个简洁而灵活的 node.js Web应用框架,使用 Express 可以快速地搭建一个完整功能的网站.本教程介绍如何从零开始搭建Express项目. 开发环境:w ...
- IEAD工具教你创建maven项目
之前一直用的是其他的开发工具,maven到目前为止也就用了3个月,今天又时间整理一些初期的使用方法,仅供参照. 为什么要用maven 原因很简单,因为使用maven,会使得项目非常容易管理. 举个例子 ...