Training little cats poj3735
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 9299 | Accepted: 2230 |
Description
Facer's pet cat just gave birth to a brood of little cats. Having considered the health of those lovely cats, Facer decides to make the cats to do some exercises. Facer has well designed a set of moves for his cats. He is now asking you to supervise the cats to do his exercises. Facer's great exercise for cats contains three different moves:
g i : Let the ith cat take a peanut.
e i : Let the ith cat eat all peanuts it have.
s i j : Let the ith cat and jth cat exchange their peanuts.
All the cats perform a sequence of these moves and must repeat it m times! Poor cats! Only Facer can come up with such embarrassing idea.
You have to determine the final number of peanuts each cat have, and directly give them the exact quantity in order to save them.
Input
The input file consists of multiple test cases, ending with three zeroes "0 0 0". For each test case, three integers n, m and k are given firstly, where n is the number of cats and k is the length of the move sequence. The following k lines describe the sequence.
(m≤1,000,000,000, n≤100, k≤100)
Output
For each test case, output n numbers in a single line, representing the numbers of peanuts the cats have.
Sample Input
3 1 6
g 1
g 2
g 2
s 1 2
g 3
e 2
0 0 0
Sample Output
2 0 1
【题意】:有n只猫咪,开始时每只猫咪有花生0颗,现有一组操作,由下面三个中的k个操作组成:
1. g i 给i只猫咪一颗花生米
2. e i 让第i只猫咪吃掉它拥有的所有花生米
3. s i j 将猫咪i与猫咪j的拥有的花生米交换
现将上述一组操作做m次后,问每只猫咪有多少颗花生?
【题解】:m达到10^9,显然不能直接算。
因为k个操作给出之后就是固定的,所以想到用矩阵,矩阵快速幂可以把时间复杂度降到O(logm)。问题转化为如何构造转置矩阵?
说下我的思路,观察以上三种操作,发现第二,三种操作比较容易处理,重点落在第一种操作上。
有一个很好的办法就是添加一个辅助,使初始矩阵变为一个n+1元组,编号为0到n,下面以3个猫为例:
定义初始矩阵A = [1 0 0 0],0号元素固定为1,1~n分别为对应的猫所拥有的花生数。
对于第一种操作g i,我们在单位矩阵基础上使Mat[0][i]变为1,例如g 1:
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1,显然[1 0 0 0]*Mat = [1 1 0 0]
对于第二种操作e i,我们在单位矩阵基础使Mat[i][i] = 0,例如e 2:
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1, 显然[1 2 3 4]*Mat = [1 2 0 4]
对于第三种操作s i j,我们在单位矩阵基础上使第i列与第j互换,例如s 1 2:
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0,显然[1 2 0 4]*Mat = [1 4 0 2]
现在,对于每一个操作我们都可以得到一个转置矩阵,把k个操作的矩阵相乘我们可以得到一个新的转置矩阵T。
A * T 表示我们经过一组操作,类似我们可以得到经过m组操作的矩阵为 A * T ^ m,最终矩阵的[0][1~n]即为答案。
上述的做法比较直观,但是实现过于麻烦,因为要构造k个不同矩阵。
有没有别的方法可以直接构造转置矩阵T?答案是肯定的。
我们还是以单位矩阵为基础:
对于第一种操作g i,我们使Mat[0][i] = Mat[0][i] + 1;
对于第二种操作e i,我们使矩阵的第i列清零;
对于第三种操作s i j,我们使第i列与第j列互换。
这样实现的话,我们始终在处理一个矩阵,免去构造k个矩阵的麻烦。
至此,构造转置矩阵T就完成了,接下来只需用矩阵快速幂求出 A * T ^ m即可,还有一个注意的地方,该题需要用到long long。
具体实现可以看下面的代码。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
#define maxn 110
typedef struct abcd
{
long long a[maxn][maxn];
} abcd;
abcd a,b;
int n;
void mul(abcd x,abcd &y)
{
abcd z;
memset(z.a,,sizeof(z.a));
int i,j,k;
for(k=; k<=n; k++)
for(i=; i<=n; i++)
if(x.a[i][k])
for(j=; j<=n; j++)
z.a[i][j]+=x.a[i][k]*y.a[k][j]; for(i=; i<=n; i++)
for(j=; j<=n; j++)y.a[i][j]=z.a[i][j];
}
void fun(long long m)
{
int i,j;
memset(b.a,,sizeof(b.a));
for(i=; i<=n; i++)
b.a[i][i]=;
while(m)
{
if(m&)
{
mul(a,b);
}
m>>=;
mul(a,a);
}
}
int main()
{
int k,i,y,yy,j;
int m;
char x;
while(scanf("%d%d%d",&n,&m,&k),(n||m||k))
{
memset(a.a,,sizeof(a.a));
for(i=; i<=n; i++)a.a[i][i]=;
for(i=; i<k; i++)
{
getchar();
x=getchar();
if(x=='g')
{
scanf("%d",&y);
a.a[][y]++;
}
else if(x=='s')
{
scanf("%d%d",&y,&yy);
for(j=; j<=n; j++)swap(a.a[j][y],a.a[j][yy]);
}
else if(x=='e')
{
scanf("%d",&y);
for(j=; j<=n; j++)a.a[j][y]=;
}
}
fun(m);
for(i=; i<n; i++)printf("%I64d ",b.a[][i]);
printf("%I64d\n",b.a[][i]);
}
}
Training little cats poj3735的更多相关文章
- Training little cats(poj3735,矩阵快速幂)
Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10737 Accepted: ...
- [POJ3735]Training little cats
题目:Training little cats 链接:http://poj.org/problem?id=3735 分析: 1)将操作用矩阵表示出来,然后快速幂优化. 2)初始矩阵:$ \left[ ...
- 矩阵快速幂 POJ 3735 Training little cats
题目传送门 /* 题意:k次操作,g:i猫+1, e:i猫eat,s:swap 矩阵快速幂:写个转置矩阵,将k次操作写在第0行,定义A = {1,0, 0, 0...}除了第一个外其他是猫的初始值 自 ...
- [POJ 3735] Training little cats (结构矩阵、矩阵高速功率)
Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9613 Accepted: 2 ...
- POJ 3735 Training little cats<矩阵快速幂/稀疏矩阵的优化>
Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13488 Accepted: ...
- POJ 3735 Training little cats(矩阵快速幂)
Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11787 Accepted: 2892 ...
- POJ 3735:Training little cats 联想到矩阵相乘
Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11208 Accepted: ...
- xiaowuga poj3735—Training little cats(特殊操作转化为矩阵操作)
题意:有n只猫,对其进行k次操作,然后反复这样操作m次. 其中g 表示 i 猫加1, e表示 i 猫为0:s表示 i 与 j 猫互换. 解释一下样例: 3 1 6g 1g 2g 2s 1 2g 3e ...
- poj3735—Training little cats(特殊操作转化为矩阵操作)
题目链接:http://poj.org/problem?id=3735 题目意思: 调教猫咪:有n只饥渴的猫咪,现有一组羞耻连续操作,由k个操作组成,全部选自: 1. g i 给第i只猫咪一颗花生 2 ...
随机推荐
- HDMI转EDP芯片NCS8803简介
NCS8803 HDMI-to-eDP w/ Scaler Features --Embedded-DisplayPort (eDP) Output 1/2/4-lane eDP @ 1.62/2.7 ...
- MongoDB学习之——安装
MongoDB安装 说明: 本次安装教程: 版本:mongoDB-3.2.4 安装环境:windows 10 ,64位操作系统 准备:安装包.Robomongo(客户端用于查看mongoDB里面的数据 ...
- Nginx + Memcached 实现Session共享的负载均衡
session共享 我们在做站点的试试,通常需要保存用户的一些基本信息,比如登录就会用到Session:当使用Nginx做负载均衡的时候,用户浏览站点的时候会被分配到不同的服务器上,此时如果登录后Se ...
- java.lang.reflect.MalformedParameterizedTypeException异常问题
做dubbo框架集成的时候,出现的问题,本来的原来的工程没有错误,引入dubbo后报错,原因是spring的jar文件冲突,我用的spring是4.x,dubbo引入的是2.5所以需要去掉,相关的po ...
- Spring详解(五)------AspectJ 实现AOP
上一篇博客我们引出了 AOP 的概念,以及 AOP 的具体实现方式.但是为什么要这样实现?以及提出的切入点表达式到底该怎么理解? 这篇博客我们通过对 AspectJ 框架的介绍来详细了解. 1.什么是 ...
- OV7670读操作
读时序共分为五个部分 首先发送start,然后发送OV7670的器件地址,ov6070的ID是0x42,0x42+一位响应位 发送ov7670的寄存器地址,这里可以读取它的厂商识别号 ,比如1c 发 ...
- PHP(Math的调用)
<script> //数学函数(用Math来调用)://round=四舍五入最接近的整数// var l = 1.1;// var y1 = Math.round(l);// docume ...
- make: Nothing to be done for 'all' 解决方法
make: Nothing to be done for 'all' 解决方法 1.这句提示是说明你已经编译好了,而且没有对代码进行任何改动. 若想重新编译,可以先删除以前编译产生的目标文件:make ...
- HTML canvas 笑脸
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 201521123100 《Java程序设计》第3周学习总结
1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识组织起来.请使用纸笔或者下面的工具画出本周学习到的知识点.截图或者拍照上传. 2. 书面作 ...