关于人脸识别

目前的人脸识别已经相对成熟,有各种收费免费的商业方案和开源方案,其中OpenCV很早就支持了人脸识别,在我选择人脸识别开发库时,也横向对比了三种库,包括在线识别的百度、开源的OpenCV和商业库虹软(中小型规模免费)。

百度的人脸识别,才上线不久,文档不太完善,之前联系百度,官方也给了我基于Android的Example,但是不太符合我的需求,一是照片需要上传至百度服务器(这个是最大的问题),其次,人脸的定位需要自行去实现(捕获到人脸后上传进行识别)。

OpenCV很早以前就用过,当时做人脸+车牌识别时,最先考虑的就是OpenCV,但是识别率在当时不算很高,后来是采用了一个电子科大的老师自行开发的识别库(相对易用,识别率也还不错),所以这次准备做时,没有选择OpenCV。

虹软其实在无意间发现的,当时正在寻找开发库,正在测试Python的一个方案,就发现有新闻说虹软的识别库全面开放并且可以免费使用,而且是离线识别,所以就下载尝试了一下,发现识别率还不错,所以就暂定了采用虹软的识别方案。这里主要就给大家分享一下开发过程当中的一些坑和使用心得,顺便开源识别库的C# Wrapper。

SDK的C# Wrapper

由于虹软的库是采用C++开发的,而我的应用程序采用的是C#,所以,需要对库进行包装,便于C#的调用,包装的主要需求是可以在C#中快速方便的调用,无需考虑内存、指针等问题,并且具备一定的容错性。Wrapper库目前已经开源,大家可以到Github上进行下载,地址点击这里。Wrapper库基本上没有什么可以说的,无非是对PInvoke的包装,只是里面做了比较多的细节处理,屏蔽了调用细节,提供了相对高层的函数。有兴趣的可以看看源代码。

Wrapper库的使用例子

基本使用

注意使用之前,在虹软申请了新的Key后,需要同时更新libs下的三个dll文件,key和sdk的版本是相关联的,否则会抛出异常。

人脸检测(静态图片):

using (var detection = LocatorFactory.GetDetectionLocator("appId", "sdkKey"))
{
var image = Image.FromFile("test.jpg");
var bitmap = new Bitmap(image); var result = detection.Detect(bitmap, out var locateResult);
//检测到位置信息在使用完毕后,需要释放资源,避免内存泄露
using (locateResult)
{
if (result == ErrorCode.Ok && locateResult.FaceCount > 0)
{
using (var g = Graphics.FromImage(bitmap))
{
var face = locateResult.Faces[0].ToRectangle();
g.DrawRectangle(new Pen(Color.Chartreuse), face.X, face.Y, face.Width, face.Height);
} bitmap.Save("output.jpg", ImageFormat.Jpeg);
}
}
}

人脸跟踪(人脸跟踪一般用于视频的连续帧识别,相较于检测,又更高的执行效率,这里用静态图片做例子,实际使用和检测没啥区别):

using (var detection = LocatorFactory.GetTrackingLocator("appId", "sdkKey"))
{
var image = Image.FromFile("test.jpg");
var bitmap = new Bitmap(image); var result = detection.Detect(bitmap, out var locateResult);
using (locateResult)
{
if (result == ErrorCode.Ok && locateResult.FaceCount > 0)
{
using (var g = Graphics.FromImage(bitmap))
{
var face = locateResult.Faces[0].ToRectangle();
g.DrawRectangle(new Pen(Color.Chartreuse), face.X, face.Y, face.Width, face.Height);
} bitmap.Save("output.jpg", ImageFormat.Jpeg);
}
}
}

人脸对比:

using (var proccesor = new FaceProcessor("appid",
"locatorKey", "recognizeKey", true))
{
var image1 = Image.FromFile("test2.jpg");
var image2 = Image.FromFile("test.jpg"); var result1 = proccesor.LocateExtract(new Bitmap(image1));
var result2 = proccesor.LocateExtract(new Bitmap(image2)); //FaceProcessor是个整合包装类,集成了检测和识别,如果要单独使用识别,可以使用FaceRecognize类
//这里做演示,假设图片都只有一张脸
//可以将FeatureData持久化保存,这个即是人脸特征数据,用于后续的人脸匹配
//File.WriteAllBytes("XXX.data", feature.FeatureData);FeatureData会自动转型为byte数组 if ((result1 != null) & (result2 != null))
Console.WriteLine(proccesor.Match(result1[0].FeatureData, result2[0].FeatureData, true));
}

使用注意事项

LocateResult(检测结果)和Feature(人脸特征)都包含需要释放的内存资源,在使用完毕后,记得需要释放,否则会引起内存泄露。FaceProcessorFaceRecognizeMatch函数,在完成比较后,可以自动释放,只需要最后两个参数指定为true即可,如果是用于人脸匹配(1:N),则可以采用默认参数,这种情况下,第一个参数指定的特征数据不会自动释放,用于循环和特征库的特征进行比对。

整合的完整例子

在Github上,有完整的FaceDemo例子,里面主要实现了通过ffmpeg采集RTSP协议的图像(使用海康的摄像机),然后进行人脸匹配。在开发过程中遇到不少的坑。

人脸识别的首要工作就是捕获摄像机视频帧,这一块上是坑的最久的,因为最开始采用的是OpenCV的包装库,Emgu.CV,在开发过程中,捕获USB摄像头时,倒是问题不大,没有出现过异常。在捕获RTSP视频流时,会不定时的出现AccessviolationException 异常,短则几十分钟,长则几个小时,总之就是不稳定。在官方Github地址上,也提了Issue,他们给出的答复是屏蔽的我业务逻辑,仅捕获视频流试试,结果问题依然,所以,我基本坑定了试Emgu.CV上面的问题。后来经过反复的实验,最终确定了选择ffmpeg。

ffmepg主要采用ProcessStartInfo进行调用,我采用的是NReco.VideoConverter(一个ffmpeg调用的包装,可以通过nuget搜索安装),虽然ffmpeg解决了稳定性问题,但是实际开发时,也遇到了不少坑,其中,最主要的是NReco.VideoConverter没有任何文档和例子(实际有,需要75刀购买),所以,自己研究了半天,如何捕获视频流并转换为Bitmap对象。只要实现这一步,后续就是调用Wrapper就行了。

FaceDemo详解

上面说到了,通过ffmpeg捕获视频流并转换Bitmap是重点,所以,这里也主要介绍这一块。

首先是ffmpeg的调用参数:

var setting =
new ConvertSettings
{
CustomOutputArgs = "-an -r 15 -pix_fmt bgr24 -updatefirst 1"
}; //-s 1920x1080 -q:v 2 -b:v 64k task = ffmpeg.ConvertLiveMedia("rtsp://admin:12qwaszxA@192.168.1.64:554/h264/ch1/main/av_stream", null,
outputStream, Format.raw_video, setting);
task.OutputDataReceived += DataReceived;
task.Start();

-an表示不捕获音频流,-r表示帧率,根据需求和实际设备调整此参数,-pix_fmt比较重要,一般情况下,指定为bgr24不会有太大问题(还是看具体设备),之前就是用成了rgb24,结果捕获出来的图像,人都变成阿凡达了,颜色是反的。最后一个参数,坑的我差点放弃这个方案。本身,ffmpeg在调用时,需要指定一个文件名模板,捕获到的输出会按照模板生成文件,如果要将数据输出到控制台,则最后传入一个-即可,最开始没有指定updatefirst,ffmpeg在捕获了第一帧后就抛出了异常,最后查了半天ffmpeg说明(完整参数说明非常多,输出到文本有1319KB),发现了这个参数,表示持续更新第一个文件。最后,在调用视频捕获是,需要指定输出格式,必须指定为Format.raw_video,实际上这个格式名称有些误导人,按道理将应该叫做raw_image,因为最终输出的是每帧原始的位图数据。

到此为止,还并没有解决视频流数据的捕获,因为又来一个坑,ProcessStartInfo的控制台缓冲区大小只有32768 bytes,即,每一次的输出,实际上并不是一个完整的位图数据。

//完整代码参加Github源代码
//代码片段1
private Bitmap _image;
private IntPtr _pImage; {
_pImage = Marshal.AllocHGlobal(1920 * 1080 * 3);
_image = new Bitmap(1920, 1080, 1920 * 3, PixelFormat.Format24bppRgb, _pImage);
} //代码片段2
private MemoryStream outputStream; private void DataReceived(object sender, EventArgs e)
{
if (outputStream.Position == 6220800)
lock (_imageLock)
{
var data = outputStream.ToArray(); Marshal.Copy(data, 0, _pImage, data.Length); outputStream.Seek(0, SeekOrigin.Begin);
}
}

花了不少时间摸索(不要看只有几行,人都整崩溃了),得出了上述代码。首先,我捕获的图像数据是24位的,并且图像大小是1080p的,所以,实际上,一个原始位图数据的大小为stride * height,即width * 3 * height,大小为6220800 bytes。所以,在判断了捕获数据到达这个大小后,就进行Bitmap转换处理,然后将MemoryStream的位置移动到最开始。需要注意的时,由于捕获到的是原始数据(不包含bmp的HeaderInfo),所以注意看Bitmap的构造方式,是通过一个指向原始数据位置的指针就行构造的,更新该图像时,也仅需要更新指针指向的位置数据即可,无需在建立新的Bitmap实例。

位图数据获取到了,就可以进行识别处理了,高高兴兴的加上了识别逻辑,但是现实总是充满了意外和惊喜,没错,坑又来了。没有加入识别逻辑的时候,捕获到的图像在PictureBox上显示非常正常,清晰、流畅,加上识别逻辑后,开始出现花屏(捕获到的图像花屏)、拖影、显示延迟(至少会延迟10-20秒以上)、程序卡顿,总之就是各种问题。最开始,我的识别逻辑写到DataReceived方法里面的,这个方法是运行于主线程外的另一个线程中的,其实按道理将,捕获、识别、显示位于一个线程中,应该是不会出现问题,我估计(不确定,没有去深入研究,如果谁知道实际原因,可以留言告诉我),是因为ffmpeg的原因,因为ffmpeg是单独的一个进程在跑,他的数据捕获是持续在进行的,而识别模块的处理时间大于每一帧的采集时间,所以,缓冲区中的数据没有得到及时处理,ffmpeg接收到的部分图像数据(大于32768的数据)被丢弃了,然后就出现了各种问题。最后,又是一次耗时不短的探索之旅。

private void Render()
{
while (_renderRunning)
{
if (_image == null)
continue; Bitmap image; lock (_imageLock)
{
image = (Bitmap) _image.Clone();
} if (_shouldShot){
WriteFeature(image);
_shouldShot = false;
} Verify(image); if (videoImage.InvokeRequired)
videoImage.Invoke(new Action(() => { videoImage.Image = image; }));
else
videoImage.Image = image;
}
}

如上代码所述,我单独开了一个线程,用于图像的识别处理和显示,每次都从已捕获到的图像中克隆出新的Bitmap实例进行处理。这种方式的缺点在于,有可能会导致丢帧的现象,因为上面说到了,识别时间(如果检测到新的人脸,那么加上匹配,大约需要130ms左右)大于每帧时间,但是并不影响识别效果和需求的实现,基本丢弃的帧可以忽律。最后,运行,稳定了、完美了,实际也感觉不到丢帧。

Demo程序,我运行了大约4天左右,中间没有出现过任何异常和识别错误。

写在最后

虽然虹软官方表示,免费识别库适用于1000人脸库以下的识别,实际上,做一定的工作(工作量其实也不小),也是可以实现较大规模的人脸搜索滴。例如,采用多线程进行匹配,如果人脸库人脸数量大于1000,则可以考虑每个线程分别进行处理,人脸特征数据做缓存(一个人脸的特征数据是22KB,对内存要求较高),以提升程序的识别搜索效率。或者人脸库特别大的情况下,可以采用分布式处理,人脸特征加载到Redis数据库当中,多个进程多个线程读取处理,每个线程上传自己的识别结果,然后主进程做结果合并判断工作,主要的挑战就在于多线程的工作分配一致性和对单点故障的容错性。


更新:

DEMO中的例子采用了IP Camera,一般情况下,大家可能用USB Camera居多,所以,更新了源代码,增加了USB Camera的例子,只需要屏蔽掉IP Camara代码即可。

task = ffmpeg.ConvertLiveMedia("video=USB2.0 PC CAMERA", "dshow",
outputStream, Format.raw_video, setting);

需要注意的有以下几点:

  • 设备名称可以通过控制面板或者ffmpeg的命令获取:ffmpeg -list_devices true -f dshow -i dummy
  • 注意修改捕获的图像大小,一般USB摄像头是640*480,更新的代码增加了全局变量,可以直接修改。
  • 如果要查询USB摄像头支持的分辨率,也可以通过ffmpeg命令:ffmpeg -list_options true -f dshow -i video="USB2.0 PC CAMERA"

更新2:

源代码中新增了对 .net core 2.0的支持,因为用到了GDI+相关函数,所以用的是CoreCompat/System.Drawing,所以在部署环境下需要安装libgdiplus, apt-get intall libgdiplus

另外,有关于视频流的采集,除了使用FFMEPG和一些开源的开发库外,也可以使用厂商的SDK,不过之前试过海康的SDK,那叫一个难用啊,所以大家自己选择吧。

更新3:

虹软SDK更新了新的功能,开发包同步更新,支持年龄和性别的评估。

C#实现基于ffmepg加虹软的人脸识别的更多相关文章

  1. C#实现基于ffmpeg加虹软的人脸识别demo及开发分享

    对开发库的C#封装,屏蔽使用细节,可以快速安全的调用人脸识别相关API.具体见github地址.新增对.NET Core的支持,在Linux(Ubuntu下)测试通过.具体的使用例子和Demo详解,参 ...

  2. C#实现基于ffmpeg加虹软的人脸识别

    关于人脸识别 目前的人脸识别已经相对成熟,有各种收费免费的商业方案和开源方案,其中OpenCV很早就支持了人脸识别,在我选择人脸 识别开发库时,也横向对比了三种库,包括在线识别的百度.开源的OpenC ...

  3. 转:基于开源项目OpenCV的人脸识别Demo版整理(不仅可以识别人脸,还可以识别眼睛鼻子嘴等)【模式识别中的翘楚】

    文章来自于:http://blog.renren.com/share/246648717/8171467499 基于开源项目OpenCV的人脸识别Demo版整理(不仅可以识别人脸,还可以识别眼睛鼻子嘴 ...

  4. 关于运行“基于极限学习机ELM的人脸识别程序”代码犯下的一些错误

    代码来源 基于极限学习机ELM的人脸识别程序 感谢文章主的分享 我的环境是 win10 anaconda Command line client (version 1.6.5)(conda 4.3.3 ...

  5. opencv基于PCA降维算法的人脸识别

    opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as n ...

  6. 虹软AI 人脸识别SDK接入 — 参数优化篇

    引言 使用了免费的人脸识别算法,感觉还是很不错的,但是初次接触的话会对一些接口的参数有些疑问的.这里分享一下我对一些参数的验证结果(这里以windows版本为例,linux.android基本一样), ...

  7. 基于Arcface Android平台的人脸识别实现

    效果图 先上效果,让大家看看如何 现在有很多人脸识别的技术我们可以拿来使用:但是个人认为还是离线端的SDK比较实用:所以个人一直在搜集人脸识别的SDK:原来使用开源的OpenCV:最近有个好友推荐虹软 ...

  8. 基于iOS用CoreImage实现人脸识别

    2018-09-04更新: 很久没有更新文章了,工作之余花时间看了之前写的这篇文章并运行了之前写的配套Demo,通过打印人脸特征CIFaceFeature的属性,发现识别的效果并不是很好,具体说明见文 ...

  9. Android 虹软免费人脸识别App

    人脸识别+本机Web后端 人脸sdk采用虹软sdk,本机web采用AndServer:上传姓名+人脸图片即可实现注册源码地址:https://github.com/joetang1989/ArcFac ...

随机推荐

  1. Day2 - Linux发展史

    第1章 Linux发展史 1.1 什么是操作系统 操作系统是人与计算机硬件的一个中介. 1.2 操作系统组成 操作系统类似与鸡蛋 蛋壳--------->系统中各种各样的软件 蛋清------- ...

  2. 车牌识别OCR—易泊时代智慧城市解决方案模块

    牌识别(License Plate Recognition,LPR) 是视频图像识别技术在智能交通领域中的一个模块.车牌识别运用OCR技术,将视频流或图片中的汽车牌照从复杂的应用场景中提取并识别出来, ...

  3. 如何将ASP.NET-WebApi发布到IIS6.0上(转)

    关于"如何将ASP.NET-WebApi发布到IIS6.0上"的这方面的学习,一开始项目组长让我们接触的时候,我的心情是这样的 哇呜.jpg 当时真的是一脸懵逼啊,对于刚接触asp ...

  4. Prism for Xamarin.Forms

    一.使用环境 OS:Win 10 16273 VS:VS2017- 15.3.4 Xamarin:4.6.3.4,nuget:2.4 Android Emulator:Visual Studio fo ...

  5. 【Beta阶段】计划安排

    一.新成员介绍 姓名    陈雄 学号    106 角色    前端 个人相片     二.完善功能 登录注册 记分板 排行榜 界面优化 三.新增功能 换肤(可以一试) 联网PK 分享邀请 四.团队 ...

  6. 201521123089 《Java程序设计》第7周学习总结

    一.本周学习总结 1.以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 二.书面作业 1.ArrayList代码分析 1.1 解释ArrayList的contains源代码 如果对象为空,ele ...

  7. 201521123080《Java程序设计》第5周学习总结

    1. 本周学习总结 1.1 尝试使用思维导图总结有关多态与接口的知识点. 2. 书面作业 1.代码阅读:Child压缩包内源代码 1.1 com.parent包中Child.java文件能否编译通过? ...

  8. 201521123025<<java程序设计>>第4周学习总结

    Q1. 本周学习总结 Q2.书面作业 1.注释的应用 使用类的注释与方法的注释为前面编写的类与方法进行注释,并在Eclipse中查看.(截图) 2.面向对象设计(大作业1,非常重要) 2.1 将在网上 ...

  9. 201521123028《Java程序设计》第4周学习总结

    1. 本周学习总结 2. 书面作业 Q1.注释的应用 使用类的注释与方法的注释为前面编写的类与方法进行注释,并在Eclipse中查看. 对上周PTA的实验5-3中的矩形和圆形类做注释. Q2.面向对象 ...

  10. del命令实现全盘删除指定文件

    @echo off Rem :全盘删除指定文件 set "fileName=Normal.dotm" set "outPutPath=C:\result.txt" ...