Description

There are n cities in Berland, each of them has a unique id — an integer from 1 to n, the capital is the one with id 1. Now there is a serious problem in Berland with roads — there are no roads.

That is why there was a decision to build n - 1 roads so that there will be exactly one simple path between each pair of cities.

In the construction plan t integers a1, a2, …, at were stated, where t equals to the distance from the capital to the most distant city, concerning new roads. ai equals the number of cities which should be at the distance i from the capital. The distance between two cities is the number of roads one has to pass on the way from one city to another.

Also, it was decided that among all the cities except the capital there should be exactly k cities with exactly one road going from each of them. Such cities are dead-ends and can’t be economically attractive. In calculation of these cities the capital is not taken into consideration regardless of the number of roads from it.

Your task is to offer a plan of road’s construction which satisfies all the described conditions or to inform that it is impossible.

Input

The first line contains three positive numbers n, t and k (2 ≤ n ≤ 2·105, 1 ≤ t, k < n) — the distance to the most distant city from the capital and the number of cities which should be dead-ends (the capital in this number is not taken into consideration).

The second line contains a sequence of t integers a1, a2, …, at (1 ≤ ai < n), the i-th number is the number of cities which should be at the distance i from the capital. It is guaranteed that the sum of all the values ai equals n - 1.

Output

If it is impossible to built roads which satisfy all conditions, print -1.

Otherwise, in the first line print one integer n — the number of cities in Berland. In the each of the next n - 1 line print two integers — the ids of cities that are connected by a road. Each road should be printed exactly once. You can print the roads and the cities connected by a road in any order.

If there are multiple answers, print any of them. Remember that the capital has id 1.

Examples

input
7 3 3
2 3 1 output
7
1 3
2 1
2 6
2 4
7 4
3 5 input
14 5 6
4 4 2 2 1 output
14
3 1
1 4
11 6
1 2
10 13
6 10
10 12
14 12
8 4
5 1
3 7
2 6
5 9 input
3 1 1
2 output
-1

Key

题意:给一棵一共有n个结点(包括根节点)的树,一共有t+1层。除第一层只有一个根节点外,给出了其他每层的节点数。已知有k个结点没有子节点,要求用n−1个树枝连接所有结点,给出一种可能的连法。

可能的连法(可能)有很多,只要输出随便其中一个即可。

思路:先遍历一遍所有层,求出可行的最大最小的maxk、mink。如果题目给的k不在此范围内,则说明不能组成符合要求的树。这是唯二输出“-1”的情况。

求能产生的最少的无儿子结点:



求能产生的最多的无儿子结点:

令needk=k−mink,则除去一定有的无儿子结点,还有needk个无儿子结点需要手动产生。

然后遍历每一层,自己做出needk个无儿子结点即可。无需建立树,边遍历边输出。

第一次写出了最后一题,开心的一匹(ง •̀▿•́)ง。虽然写了就知道并不难。。。

Code

#include<cstdio>
int n, t, k;
int arr[200010]; int main()
{
scanf("%d%d%d", &n, &t, &k);
arr[0] = 1;
for (int i = 1;i <= t;++i) {
scanf("%d", arr + i);
}
arr[t + 1] = 0;
int mink = 0;
int maxk = 0;
for (int i = 0;i <= t;++i) {
maxk += arr[i] - 1;
if (arr[i] > arr[i + 1])
mink += arr[i] - arr[i + 1];
}
++maxk;
if (mink > k || maxk < k) {
printf("-1");
return 0;
}
printf("%d\n", n);
int needk = k - mink; // dead-ends that needed to created by myself
int nown = 1;
for (int i = 0;i != t;++i) {
int nextn = nown + arr[i];
if (!needk) {
if (arr[i + 1] >= arr[i]) {
int err = arr[i + 1] - arr[i] + 1;
int rem = arr[i] - 1;
for (int j = 0;j != err;++j) {
printf("%d %d\n", nown, nextn++);
}
++nown;
for (int j = 0;j != rem;++j) {
printf("%d %d\n", nown++, nextn++);
}
}
else { // arr[i + 1] < arr[i]
for (int j = 0;j != arr[i + 1];++j) {
printf("%d %d\n", nown++, nextn++);
}
nown += arr[i] - arr[i + 1];
}
}
else {
if (arr[i + 1] >= arr[i]) {
int nextnown = nextn;
int nextnextn = nextn + arr[i + 1];
int err = arr[i + 1] - arr[i] + 1;
for (int j = 0;j != err;++j) {
printf("%d %d\n", nown, nextn++);
}
while (nextn != nextnextn) {
if (!needk) break;
--needk;
printf("%d %d\n", nown, nextn++);
}
++nown;
while (nextn != nextnextn) {
printf("%d %d\n", nown++, nextn++);
}
nown = nextnown;
}
else { // arr[i + 1] < arr[i]
int nextnown = nextn;
int nextnextn = nextn + arr[i + 1];
printf("%d %d\n", nown, nextn++);
while (nextn != nextnextn) {
if (!needk) break;
--needk;
printf("%d %d\n", nown, nextn++);
}
++nown;
while (nextn != nextnextn) {
printf("%d %d\n", nown++, nextn++);
}
nown = nextnown;
}
}
}
return 0;
}

[刷题]Codeforces 746G - New Roads的更多相关文章

  1. [刷题]Codeforces 794C - Naming Company

    http://codeforces.com/contest/794/problem/C Description Oleg the client and Igor the analyst are goo ...

  2. [刷题codeforces]650A.637A

    650A Watchmen 637A Voting for Photos 点击查看原题 650A又是一个排序去重的问题,一定要注意数据范围用long long ,而且在写计算组合函数的时候注意也要用l ...

  3. [刷题codeforces]651B/651A

    651B Beautiful Paintings 651A Joysticks 点击可查看原题 651B是一个排序题,只不过多了一步去重然后记录个数.每次筛一层,直到全为0.从这个题里学到一个正确姿势 ...

  4. [刷题]Codeforces 786A - Berzerk

    http://codeforces.com/problemset/problem/786/A Description Rick and Morty are playing their own vers ...

  5. CF刷题-Codeforces Round #481-G. Petya's Exams

    题目链接:https://codeforces.com/contest/978/problem/G 题目大意:n天m门考试,每门考试给定三个条件,分别为:1.可以开始复习的日期.2.考试日期.3.必须 ...

  6. CF刷题-Codeforces Round #481-F. Mentors

    题目链接:https://codeforces.com/contest/978/problem/F 题目大意: n个程序员,k对仇家,每个程序员有一个能力值,当甲程序员的能力值绝对大于乙程序员的能力值 ...

  7. CF刷题-Codeforces Round #481-D. Almost Arithmetic Progression

    题目链接:https://codeforces.com/contest/978/problem/D 题解: 题目的大意就是:这组序列能否组成等差数列?一旦构成等差数列,等差数列的公差必定确定,而且,对 ...

  8. Codeforces 746G New Roads (构造)

                                                                            G. New Roads                 ...

  9. [刷题]Codeforces 785D - Anton and School - 2

    Description As you probably know, Anton goes to school. One of the school subjects that Anton studie ...

随机推荐

  1. oStrictHostKeyChecking=no 参数

    应用在脚本当中,避免使用域名链接服务器的时候,检查knows_hosts文件

  2. AP付款出现(-1)例外处理

    ---手工处理方法---1.根据收款编号查询事件表中的"事件ID"---2.将AP_CHECKS_ALL表中的PAYMENT_TYPE_FLAG 标记由"Q"更 ...

  3. Laravel Session 遇到的坑

    这两天遇到了一个很奇怪的问题,更新session ,session的值不变.经过一番追查,终于找到问题,并搞明白了原理.写这篇博客记录下. 框架版本 Laravel 5.4 问题 先来描述下问题,我在 ...

  4. Spark处理日志文件常见操作

    spark有自己的集群计算技术,扩展了hadoop mr模型用于高效计算,包括交互式查询和 流计算.主要的特性就是内存的集群计算提升计算速度.在实际运用过程中也当然少不了对一些数据集的操作.下面将通过 ...

  5. XJOI1424解压字符串

    解压字符串 给你一个字符串S,S是已经被加密过的字符串.现在要求你把字符串S还原.字符串S可能会出现这样的格式:k(q),它表示字符串q重复了k次,其中q是0个或多个字符,而k是一个数字,范围是0至9 ...

  6. Java--JDBC连接数据库

         我们知道Java中的jdbc是用来连接应用程序和数据系统的,本篇文章主要就来看看关于JDBC的实现和使用细节.主要包含以下几点内容: JDBC的基本知识(数据驱动程序) JDBC的连接配置 ...

  7. vagrant up 失败解决办法

    前几天在自己电脑搭建vagrant环境报错:"There was an error while executing `VBoxManage`, a CLI used by Vagrant f ...

  8. 老李推荐:第2章3节《MonkeyRunner源码剖析》了解你的测试对象: NotePad窗口Activity之NoteEditor简介

    老李推荐:第2章3节<MonkeyRunner源码剖析>了解你的测试对象: NotePad窗口Activity之NoteEditor简介   我们在增加和编辑一个日记的时候会从NotesL ...

  9. python webdriver安装

    前言 本次就python webdriver的安装和驱动不同浏览器的配置进行分享,以解决大家在入门过程中的一些基本的环境问题. python安装 目前python有2.x和3.x版本,笔者在这里推荐2 ...

  10. Java ---理解MVC架构

    之间的文章,我们主要是介绍了jsp的相关语法操作,我们可以通过请求某个jsp页面,然后由相对应的servlet实例给我们返回html页面.但是在实际的项目中,我们很少会直接的请求某个页面,一般都是请求 ...