转 http://www.cnblogs.com/wupeiqi/articles/4980620.html

1、必备

#### 第一波 ####

def foo():
    print 'foo'
 
foo     #表示是函数
foo()   #表示执行foo函数
 
#### 第二波 ####
def foo():
    print 'foo'
 
foo = lambda x: x + 1
 
foo()   # 执行下面的lambda表达式,而不再是原来的foo函数,因为函数 foo 被重新定义了

2、需求来了

初创公司有N个业务部门,1个基础平台部门,基础平台负责提供底层的功能,如:数据库操作、redis调用、监控API等功能。业务部门使用基础功能时,只需调用基础平台提供的功能即可。如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
############### 基础平台提供的功能如下 ###############
 
def f1():
    print 'f1'
 
def f2():
    print 'f2'
 
def f3():
    print 'f3'
 
def f4():
    print 'f4'
 
############### 业务部门A 调用基础平台提供的功能 ###############
 
f1()
f2()
f3()
f4()
 
############### 业务部门B 调用基础平台提供的功能 ###############
 
f1()
f2()
f3()
f4()

目前公司有条不紊的进行着,但是,以前基础平台的开发人员在写代码时候没有关注验证相关的问题,即:基础平台的提供的功能可以被任何人使用。现在需要对基础平台的所有功能进行重构,为平台提供的所有功能添加验证机制,即:执行功能前,先进行验证。

老大把工作交给 Low B,他是这么做的:

1
跟每个业务部门交涉,每个业务部门自己写代码,调用基础平台的功能之前先验证。诶,这样一来基础平台就不需要做任何修改了。

当天Low B 被开除了...

老大把工作交给 Low BB,他是这么做的:

1
只对基础平台的代码进行重构,让N业务部门无需做任何修改

############### 基础平台提供的功能如下 ###############

def f1():
# 验证1
# 验证2
# 验证3
print 'f1'

def f2():
# 验证1
# 验证2
# 验证3
print 'f2'

def f3():
# 验证1
# 验证2
# 验证3
print 'f3'

def f4():
# 验证1
# 验证2
# 验证3
print 'f4'

############### 业务部门不变 ###############
### 业务部门A 调用基础平台提供的功能###

f1()
f2()
f3()
f4()

### 业务部门B 调用基础平台提供的功能 ###

f1()
f2()
f3()
f4()

############### 基础平台提供的功能如下 ############### 

def f1():
# 验证1
# 验证2
# 验证3
print 'f1' def f2():
# 验证1
# 验证2
# 验证3
print 'f2' def f3():
# 验证1
# 验证2
# 验证3
print 'f3' def f4():
# 验证1
# 验证2
# 验证3
print 'f4' ############### 业务部门不变 ###############
### 业务部门A 调用基础平台提供的功能### f1()
f2()
f3()
f4() ### 业务部门B 调用基础平台提供的功能 ### f1()
f2()
f3()
f4()

过了一周 Low BB 被开除了...

老大把工作交给 Low BBB,他是这么做的:

1
只对基础平台的代码进行重构,其他业务部门无需做任何修改

############### 基础平台提供的功能如下 ###############

def check_login():
# 验证1
# 验证2
# 验证3
pass

def f1():

check_login()

print 'f1'

def f2():

check_login()

print 'f2'

def f3():

check_login()

print 'f3'

def f4():

check_login()

print 'f4'

############### 基础平台提供的功能如下 ############### 

def check_login():
# 验证1
# 验证2
# 验证3
pass def f1(): check_login() print 'f1' def f2(): check_login() print 'f2' def f3(): check_login() print 'f3' def f4(): check_login() print 'f4'

老大看了下Low BBB 的实现,嘴角漏出了一丝的欣慰的笑,语重心长的跟Low BBB聊了个天:

老大说:

写代码要遵循开发封闭原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:

  • 封闭:已实现的功能代码块
  • 开放:对扩展开发

如果将开放封闭原则应用在上述需求中,那么就不允许在函数 f1 、f2、f3、f4的内部进行修改代码,老板就给了Low BBB一个实现方案:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
def w1(func):
    def inner():
        # 验证1
        # 验证2
        # 验证3
        return func()
    return inner
 
@w1
def f1():
    print 'f1'
@w1
def f2():
    print 'f2'
@w1
def f3():
    print 'f3'
@w1
def f4():
    print 'f4'

对于上述代码,也是仅仅对基础平台的代码进行修改,就可以实现在其他人调用函数 f1 f2 f3 f4 之前都进行【验证】操作,并且其他业务部门无需做任何操作。

Low BBB心惊胆战的问了下,这段代码的内部执行原理是什么呢?

老大正要生气,突然Low BBB的手机掉到地上,恰恰屏保就是Low BBB的女友照片,老大一看一紧一抖,喜笑颜开,交定了Low BBB这个朋友。详细的开始讲解了:

单独以f1为例:

1
2
3
4
5
6
7
8
9
10
11
def w1(func):
    def inner():
        # 验证1
        # 验证2
        # 验证3
        return func()
    return inner
 
@w1
def f1():
    print 'f1'

当写完这段代码后(函数未被执行、未被执行、未被执行),python解释器就会从上到下解释代码,步骤如下:

  1. def w1(func):  ==>将w1函数加载到内存
  2. @w1

没错,从表面上看解释器仅仅会解释这两句代码,因为函数在没有被调用之前其内部代码不会被执行。

从表面上看解释器着实会执行这两句,但是 @w1 这一句代码里却有大文章,@函数名 是python的一种语法糖。

如上例@w1内部会执行一下操作:

  • 执行w1函数,并将 @w1 下面的 函数 作为w1函数的参数,即:@w1 等价于 w1(f1)
    所以,内部就会去执行:
        def inner:
            #验证
            return f1()   # func是参数,此时 func 等于 f1
        return inner     # 返回的 inner,inner代表的是函数,非执行函数
    其实就是将原来的 f1 函数塞进另外一个函数中
  • 将执行完的 w1 函数返回值赋值给@w1下面的函数的函数名
    w1函数的返回值是:
       def inner:
            #验证
            return 原来f1()  # 此处的 f1 表示原来的f1函数
    然后,将此返回值再重新赋值给 f1,即:
    新f1 = def inner:
                #验证
                return 原来f1() 
    所以,以后业务部门想要执行 f1 函数时,就会执行 新f1 函数,在 新f1 函数内部先执行验证,再执行原来的f1函数,然后将 原来f1 函数的返回值 返回给了业务调用者。
    如此一来, 即执行了验证的功能,又执行了原来f1函数的内容,并将原f1函数返回值 返回给业务调用着

Low BBB 你明白了吗?要是没明白的话,我晚上去你家帮你解决吧!!!

先把上述流程看懂,之后还会继续更新...

3、问答时间

问题:被装饰的函数如果有参数呢?

def w1(func):
def inner(arg):
# 验证1
# 验证2
# 验证3
return func(arg)
return inner

@w1
def f1(arg):
print 'f1'

一个参数

def w1(func):
def inner(arg):
# 验证1
# 验证2
# 验证3
return func(arg)
return inner @w1
def f1(arg):
print 'f1'

def w1(func):
def inner(arg1,arg2):
# 验证1
# 验证2
# 验证3
return func(arg1,arg2)
return inner

@w1
def f1(arg1,arg2):
print 'f1'

两个参数

def w1(func):
def inner(arg1,arg2):
# 验证1
# 验证2
# 验证3
return func(arg1,arg2)
return inner @w1
def f1(arg1,arg2):
print 'f1'

def w1(func):
def inner(arg1,arg2,arg3):
# 验证1
# 验证2
# 验证3
return func(arg1,arg2,arg3)
return inner

@w1
def f1(arg1,arg2,arg3):
print 'f1'

三个参数

def w1(func):
def inner(arg1,arg2,arg3):
# 验证1
# 验证2
# 验证3
return func(arg1,arg2,arg3)
return inner @w1
def f1(arg1,arg2,arg3):
print 'f1'

问题:可以装饰具有处理n个参数的函数的装饰器?

1
2
3
4
5
6
7
8
9
10
11
def w1(func):
    def inner(*args,**kwargs):
        # 验证1
        # 验证2
        # 验证3
        return func(*args,**kwargs)
    return inner
 
@w1
def f1(arg1,arg2,arg3):
    print 'f1'

问题:一个函数可以被多个装饰器装饰吗?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
def w1(func):
    def inner(*args,**kwargs):
        # 验证1
        # 验证2
        # 验证3
        return func(*args,**kwargs)
    return inner
 
def w2(func):
    def inner(*args,**kwargs):
        # 验证1
        # 验证2
        # 验证3
        return func(*args,**kwargs)
    return inner
 
 
@w1
@w2
def f1(arg1,arg2,arg3):
    print 'f1'

问题:还有什么更吊的装饰器吗?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#!/usr/bin/env python
#coding:utf-8
  
def Before(request,kargs):
    print 'before'
      
def After(request,kargs):
    print 'after'
  
  
def Filter(before_func,after_func):
    def outer(main_func):
        def wrapper(request,kargs):
              
            before_result = before_func(request,kargs)
            if(before_result != None):
                return before_result;
              
            main_result = main_func(request,kargs)
            if(main_result != None):
                return main_result;
              
            after_result = after_func(request,kargs)
            if(after_result != None):
                return after_result;
              
        return wrapper
    return outer
      
@Filter(Before, After)
def Index(request,kargs):
    print 'index'

4、functools.wraps

上述的装饰器虽然已经完成了其应有的功能,即:装饰器内的函数代指了原函数,注意其只是代指而非相等,原函数的元信息没有被赋值到装饰器函数内部。例如:函数的注释信息

def outer(func):
def inner(*args, **kwargs):
print(inner.__doc__) # None
return func()
return inner

@outer
def function():
"""
asdfasd
:return:
"""
print('func')

无元信息

def outer(func):
def inner(*args, **kwargs):
print(inner.__doc__) # None
return func()
return inner @outer
def function():
"""
asdfasd
:return:
"""
print('func')

如果使用@functools.wraps装饰装饰器内的函数,那么就会代指元信息和函数。

def outer(func):
@functools.wraps(func)
def inner(*args, **kwargs):
print(inner.__doc__) # None
return func()
return inner

@outer
def function():
"""
asdfasd
:return:
"""
print('func')

含元信息

def outer(func):
@functools.wraps(func)
def inner(*args, **kwargs):
print(inner.__doc__) # None
return func()
return inner @outer
def function():
"""
asdfasd
:return:
"""
print('func')

转发:python 装饰器--这篇文章讲的通俗易懂的更多相关文章

  1. 理解Python中的装饰器//这篇文章将python的装饰器来龙去脉说的很清楚,故转过来存档

    转自:http://www.cnblogs.com/rollenholt/archive/2012/05/02/2479833.html 这篇文章将python的装饰器来龙去脉说的很清楚,故转过来存档 ...

  2. python 装饰器 一篇就能讲清楚

    装饰器一直是我们学习python难以理解并且纠结的问题,想要弄明白装饰器,必须理解一下函数式编程概念,并且对python中函数调用语法中的特性有所了解,使用装饰器非常简单,但是写装饰器却很复杂.为了讲 ...

  3. 转发对python装饰器的理解

    [Python] 对 Python 装饰器的理解的一些心得分享出来给大家参考   原文  http://blog.csdn.net/sxw3718401/article/details/3951958 ...

  4. 一篇关于Python装饰器的博文

    这是一篇关于python装饰器的博文 在学习python的过程中处处受阻,之前的学习中Python的装饰器学习了好几遍也没能真正的弄懂.这一次抓住视频猛啃了一波,就连python大佬讲解装饰器起来也需 ...

  5. 理解 Python 装饰器看这一篇就够了

    讲 Python 装饰器前,我想先举个例子,虽有点污,但跟装饰器这个话题很贴切. 每个人都有的内裤主要功能是用来遮羞,但是到了冬天它没法为我们防风御寒,咋办?我们想到的一个办法就是把内裤改造一下,让它 ...

  6. Python装饰器总结,带你几步跨越此坑!

    欢迎添加华为云小助手微信(微信号:HWCloud002 或 HWCloud003),输入关键字"加群",加入华为云线上技术讨论群:输入关键字"最新活动",获取华 ...

  7. Python装饰器与面向切面编程

    今天来讨论一下装饰器.装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志.性能测试.事务处理等.装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量函数中与函数 ...

  8. 如何理解Python装饰器

    如何理解Python装饰器?很多学员对此都有疑问,那么上海尚学堂python培训这篇文章就给予答复. 一.预备知识 首先要理解装饰器,首先要先理解在 Python 中很重要的一个概念就是:“函数是 F ...

  9. Python 装饰器入门(上)

    翻译前想说的话: 这是一篇介绍python装饰器的文章,对比之前看到的类似介绍装饰器的文章,个人认为无人可出其右,文章由浅到深,由函数介绍到装饰器的高级应用,每个介绍必有例子说明.文章太长,看完原文后 ...

随机推荐

  1. dubbo filter链构建过程

    public <T> Exporter<T> export(Invoker<T> invoker) throws RpcException { if (Consta ...

  2. 自学Aruba1.3-WLAN一些基本常识802.11n速率计算方式、802.11n及802.11AC速率表

    点击返回:自学Aruba之路 自学Aruba1.3-WLAN一些基本常识802.11n速率计算 1. 802.11n速率计算方式1.1 802.11n使用的主要技术 802.11n采用MIMO多天线技 ...

  3. windows平台调用函数堆栈的追踪方法

    在windows平台,有一个简单的方法来追踪调用函数的堆栈,就是利用函数CaptureStackBackTrace,但是这个函数不能得到具体调用函数的名称,只能得到地址,当然我们可以通过反汇编的方式通 ...

  4. CSS列表及导航条

    大多数网页中都包含某种形式的列表,今天我们就来联系几个基本的导航条.   垂直导航条 注意要点: 去掉默认的项目符号(list-style-type:none),将外边距和内边距都设为0. 以em设置 ...

  5. Chris Richardson微服务翻译:微服务架构中的服务发现

    Chris Richardson 微服务系列翻译全7篇链接: 微服务介绍 构建微服务之使用API网关 构建微服务之微服务架构的进程通讯 微服务架构中的服务发现(本文) 微服务之事件驱动的数据管理 微服 ...

  6. css loading

    css /*loading*/ .loader { width: 100px; height: 101px; border: 8px solid; border-top-color: hsl(154, ...

  7. Zabbix实战-简易教程--宏变量(Macro)

    一.概述 Zabbix支持许多在多种情况下使用的宏.宏是一个变量,由如下特殊语法标识:MACRO 有效地使用宏可以节省时间,并使Zabbix变地更加高效. 在一个的典型用途中,宏可以用于模板中.因此, ...

  8. Mysql与PostgreSQL小pk

    普通增删改查 表结构及数据都极其简单,命名也及其不讲究.均为默认配置,mysql表默认InnoDB引擎.表x包含三个int字段a b c,100W条数据均a=1 b=2 c=3 sql语句 建表: c ...

  9. 基于Windows下python环境变量配置

    方法和Java环境变量配置是一样的,不懂的请移步这里 虽然这样说,还是唠唠叨叨几句吧QAQ 默认情况下,在windows下安装python之后,系统并不会自动添加相应的环境变量.此时不能在命令行直接使 ...

  10. 【Java学习笔记之一】java关键字及作用

    Java关键字及其作用 一. 总览: 访问控制 private protected public 类,方法和变量修饰符 abstract class extends final implements ...