直方图均衡化CImg实现
这篇博客是关于试用CImg库来实现灰度图和彩色图的直方图均衡化操作。感觉效果还不错,除了彩色图在均衡化时会有一定的色彩失真。
C++代码实现:
//
// hEqualization.hpp
// 直方图均衡化
//
// Created by Alala on 2017/3/20.
// Copyright © 2017年 Alala. All rights reserved.
// #ifndef hEqualization_h
#define hEqualization_h
#include<CImg.h> using namespace cimg_library; class hEqualization {
private:
CImg<unsigned char> image;
int x;
int y;
float totalPixel; public:
hEqualization();
hEqualization(CImg<unsigned char> img);
void setImage(CImg<unsigned char> img);
CImg<unsigned char> toGray();
void grayProcess();
void RGBProcess();
}; hEqualization::hEqualization() {
x = ;
y = ;
totalPixel = ;
}
hEqualization::hEqualization(CImg<unsigned char> img) {
image = img;
x = image.width();
y = image.height();
totalPixel = x * y;
}
void hEqualization::setImage(CImg<unsigned char> img) {
image = img;
x = image.width();
y = image.height();
totalPixel = x * y;
} CImg<unsigned char> hEqualization::toGray() {
CImg<unsigned char> gray = image;
cimg_forXY(image, x, y) {
int r = image(x, y, );
int g = image(x, y, );
int b = image(x, y, );
double temp = (r * 0.2126 + g * 0.7152 + b * 0.0722);
gray(x, y, ) = temp;
gray(x, y, ) = temp;
gray(x, y, ) = temp;
}
return gray;
}
void hEqualization::grayProcess() {
CImg<unsigned char> gray = toGray();
gray.display("gray");
float pixels[];
float probability[];
float newP[];
memset(&pixels, , *sizeof(float));
cimg_forXY(image, x, y) {
pixels[int(image(x, y, ))]++;
}
for(int i = ; i < ; i++) {
probability[i] = pixels[i] / totalPixel;
if(i == ) {
newP[i] = probability[i];
} else {
newP[i] = probability[i] + newP[i-];
}
}
cimg_forXY(image, x, y) {
int temp = gray(x, y, );
temp = int(newP[temp] * + 0.5);
gray(x, y, ) = temp;
gray(x, y, ) = temp;
gray(x, y, ) = temp;
}
gray.display("test");
}
void hEqualization::RGBProcess() {
float pixelsR[];
float pixelsG[];
float pixelsB[];
memset(&pixelsR, , *sizeof(float));
memset(&pixelsG, , *sizeof(float));
memset(&pixelsB, , *sizeof(float)); float probabilityR[];
float probabilityG[];
float probabilityB[]; float newPR[];
float newPG[];
float newPB[];
cimg_forXY(image, x, y) {
pixelsR[int(image(x, y, ))]++;
pixelsG[int(image(x, y, ))]++;
pixelsB[int(image(x, y, ))]++;
}
for(int i = ; i < ; i++) {
probabilityR[i] = pixelsR[i] / totalPixel;
probabilityG[i] = pixelsG[i] / totalPixel;
probabilityB[i] = pixelsB[i] / totalPixel;
if(i == ) {
newPR[i] = probabilityR[i];
newPG[i] = probabilityG[i];
newPB[i] = probabilityB[i];
} else {
newPR[i] = probabilityR[i] + newPR[i-];
newPG[i] = probabilityG[i] + newPG[i-];
newPB[i] = probabilityB[i] + newPB[i-];
}
}
CImg<unsigned char> color = image;
cimg_forXY(image, x, y) {
int tempR = image(x, y, );
int tempG = image(x, y, );
int tempB = image(x, y, );
tempR = int(newPR[tempR] * + 0.5);
tempG = int(newPG[tempG] * + 0.5);
tempB = int(newPB[tempB] * + 0.5);
color(x, y, ) = tempR;
color(x, y, ) = tempG;
color(x, y, ) = tempB;
}
color.display("color");
} #endif /* hEqualization_h */
直方图均衡化CImg实现的更多相关文章
- 图解直方图均衡化及其Python实现
在理解直方图均衡化的过程中,参考了一些书籍和博客,让人困惑的是,笔者对于直方图的理解还是停留在表面,并没有深入理解其内涵.因此,本文拟结合图片对直方图的概念进行阐述,并给出其Python实现,最后对她 ...
- MATLAB - 练习程序,直方图均衡化
直方图均衡化的作用是图像增强. 有两个问题比较难懂,一是为什么要选用累积分布函数,二是为什么使用累积分布函数处理后像素值会均匀分布. 第一个问题.均衡化过程中,必须要保证两个条件:①像素无论怎么映射, ...
- opencv直方图均衡化
#include <iostream> #include "highgui.h" #include "cv.h" #include "cx ...
- matlab 直方图均衡化
原理: 直方图均衡化首先是一种灰度级变换的方法: 原来的灰度范围[r0,rk]变换到[s0,sk]变换函数为:s=T(r); 为便于实现,可以用查找表(look-up table)的方式存储,即:原始 ...
- opencv 彩色图像亮度、对比度调节 直方图均衡化
直接上代码: #include <Windows.h> #include <iostream>// for stand I/O #include <string> ...
- 灰度图像--图像增强 直方图均衡化(Histogram equalization)
灰度图像--图像增强 直方图均衡化(Histogram equalization) 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些 ...
- OpenCV-Python教程(10、直方图均衡化)
相比C++而言,Python适合做原型.本系列的文章介绍如何在Python中用OpenCV图形库,以及与C++调用相应OpenCV函数的不同之处.这篇文章介绍在Python中使用OpenCV和NumP ...
- 数学之路-python计算实战(14)-机器视觉-图像增强(直方图均衡化)
我们来看一个灰度图像,让表示灰度出现的次数,这样图像中灰度为 的像素的出现概率是 是图像中全部的灰度数, 是图像中全部的像素数, 实际上是图像的直方图,归一化到 . 把 作为相应于 的累计概率 ...
- 直方图均衡化C++实现
直方图均衡化在图像增强方面有着很重要的应用.一些拍摄得到的图片,我们从其直方图可以看出,它的分布是集中于某些灰度区间,这导致人在视觉上感觉这张图的对比度不高.所以,对于这类图像,我们可以通过直方图均衡 ...
随机推荐
- PHP后台程序员工作到如今的一点心得
一个项目的建立,一开始一定要有需求文档,没有需求文档的项目注定会改来改去.还被骂的很惨.要时刻牢记一句话:口说无凭,有文档为证. 第一:开发语言的选择,PHP,当然还有JAVA,.NET你做的项目当然 ...
- UWP--数据绑定的几种方式
1.后台代码: 2.后台定义属性,前台XAML 中绑定: 3.XAML 中定义资源并应用(资源中自定义对象): 4.用元素值绑定:
- JavaScript-变量的作用域面试题
块级作用域 - 在其他的语言中,任何一对花括号中的语句都属于一个块,在这之中定义的所有变量在代码块外是不可见的 - JavaScript中没有块级作用域 //这里只有函数中定义的变 ...
- 分离数据库时出错:无法对数据库'XXX' 执行删除,因为它正用于复制"的解决方法
出现的原因是要分离的数据库是一个发布订阅的数据库.因为正在复制,所以无法脱机. 解决办法是停止发布订阅,或者删掉它..再分离.有部分情况是在复制目录下并没有看到发布订阅. 有可能是因为以前建立发布订阅 ...
- Hive 伪分布式下安装
本安装过程只作为个人笔记用,非标准教程,请酌情COPY.:-D Hive下载 下载之前,需先查看兼容的Hadoop版本,并安装hadoop,参考 http://www.cnblogs.com/yong ...
- iOS开发之UIView的常见属性
1.所有控件都继承自UIView,UIView的常见属性如下: @property(nonatomic,readonly) UIView *superview;获得自己的父控件对象 @property ...
- 一个基于php+mysql的外卖订餐网站(带源码)
订饭组 一个基于php+mysql的外卖订餐网站,包括前端和后台.源码地址 源码演示地址:http://dingfanzu.com 商家后台系统:http://dingfanzu.com/admin ...
- 实验楼-1-Hello world!
初识实验楼,决定在上面好好的练练手. Course 1 : print "Hello world" 在虚拟机桌面,打开终端Xfce,通过运行linux指令,新建c文件,进行编辑,编 ...
- css3动画图片波纹效果
这里的图片很有特点,下面有演示图片样式 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" &quo ...
- 老李谈HTTP1.1的长连接 1
老李谈HTTP1.1的长连接 poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.如果对课程感兴趣,请大家咨询qq:9088214 ...