D. Jerry's Protest

time limit per test:2 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output

Andrew and Jerry are playing a game with Harry as the scorekeeper. The game consists of three rounds. In each round, Andrew and Jerry draw randomly without replacement from a jar containing n balls, each labeled with a distinct positive integer. Without looking, they hand their balls to Harry, who awards the point to the player with the larger number and returns the balls to the jar. The winner of the game is the one who wins at least two of the three rounds.

Andrew wins rounds 1 and 2 while Jerry wins round 3, so Andrew wins the game. However, Jerry is unhappy with this system, claiming that he will often lose the match despite having the higher overall total. What is the probability that the sum of the three balls Jerry drew is strictly higher than the sum of the three balls Andrew drew?

Input

The first line of input contains a single integer n (2 ≤ n ≤ 2000) — the number of balls in the jar.

The second line contains n integers ai (1 ≤ ai ≤ 5000) — the number written on the ith ball. It is guaranteed that no two balls have the same number.

Output

Print a single real value — the probability that Jerry has a higher total, given that Andrew wins the first two rounds and Jerry wins the third. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
Input
2
1 2
Output
0.0000000000
Input
3
1 2 10
Output
0.0740740741
Note

In the first case, there are only two balls. In the first two rounds, Andrew must have drawn the 2 and Jerry must have drawn the 1, and vice versa in the final round. Thus, Andrew's sum is 5 and Jerry's sum is 4, so Jerry never has a higher total.

In the second case, each game could've had three outcomes — 10 - 2, 10 - 1, or 2 - 1. Jerry has a higher total if and only if Andrew won 2 - 1 in both of the first two rounds, and Jerry drew the 10 in the last round. This has probability .

题目链接:http://codeforces.com/contest/626/problem/D

题意:给定n个球以及每个球对应的分值a[],现在A和B进行三局比赛,每局比赛两人随机抽取一个球进行比拼,分值高的获胜。现在A胜了两局,B不服输,因为他三局总分高于A。问发生的概率。

分析:首先分值最高为5000,可以考虑枚举分值求概率。假设B胜的那一局胜X分,A胜的两局胜Y分,我们可以考虑枚举X或者Y。以枚举X来说要求X > Y,关键在于求出B一局胜分X概率Pb[X] 以及 A两局胜分Y的概率Pa[Y]。

那么直接暴力就好了,暴力前sort一下。对于第i个球a[i],胜分的球在j(1 <= j < i),把所有胜分求出并统计cnt[]。这样对于一局比拼的胜分T,概率为cnt[T] / (n*(n-1)/2)。

求出一局的胜分,两局也就好求了。对于A而言,两局胜T分显然概率为cnt[a] / (n*(n-1)/2) * cnt[b] / (n*(n-1)/2) 其中(a + b == T)。A两局胜分T,可以O(a[max] * a[max])求出。

这题会爆int,所以。。。。。

下面给出AC代码:

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
int n;
double ans;
ll cnt[N<<],a[N<<],b[N<<];
inline int read()
{
int x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
int main()
{
n=read();
for(int i=;i<=n;i++)
a[i]=read();
sort(a+,a++n);
for(int i=;i<=n;i++)
{
for(int j=n-;j>=;j--)
{
cnt[a[i]-a[j]]++;
}
}
ll sum=(n-)*n/;
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
b[i+j]+=1ll*cnt[i]*cnt[j];
}
}
for(int i=;i<=;i++)
{
for(int j=i-;j>=;j--)
{
ans+=1.0*cnt[i]*b[j]/sum/sum/sum;
}
}
printf("%.10lf\n",ans);
return ;
}

Codeforces 626D Jerry's Protest(暴力枚举+概率)的更多相关文章

  1. CodeForces 626D Jerry's Protest

    计算前两盘A赢,最后一盘B赢的情况下,B获得的球的值总和大于A获得的球总和值的概率. 存储每一对球的差值有几个,然后处理一下前缀和,暴力枚举就好了...... #include<cstdio&g ...

  2. Codeforces 626D Jerry's Protest 「数学组合」「数学概率」

    题意: 一个袋子里装了n个球,每个球都有编号.甲乙二人从每次随机得从袋子里不放回的取出一个球,如果甲取出的球比乙取出的球编号大则甲胜,否则乙胜.保证球的编号xi各不相同.每轮比赛完了之后把取出的两球放 ...

  3. 8VC Venture Cup 2016 - Elimination Round D. Jerry's Protest 暴力

    D. Jerry's Protest 题目连接: http://www.codeforces.com/contest/626/problem/D Description Andrew and Jerr ...

  4. D. Diverse Garland Codeforces Round #535 (Div. 3) 暴力枚举+贪心

    D. Diverse Garland time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  5. codeforces 675B B. Restoring Painting(暴力枚举)

    题目链接: B. Restoring Painting time limit per test 1 second memory limit per test 256 megabytes input s ...

  6. CodeForces - 593A -2Char(思维+暴力枚举)

    Andrew often reads articles in his favorite magazine 2Char. The main feature of these articles is th ...

  7. Codeforces Round #349 (Div. 1) B. World Tour 最短路+暴力枚举

    题目链接: http://www.codeforces.com/contest/666/problem/B 题意: 给你n个城市,m条单向边,求通过最短路径访问四个不同的点能获得的最大距离,答案输出一 ...

  8. Codeforces Round #298 (Div. 2) B. Covered Path 物理题/暴力枚举

    B. Covered Path Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/534/probl ...

  9. Codeforces 425A Sereja and Swaps(暴力枚举)

    题目链接:A. Sereja and Swaps 题意:给定一个序列,能够交换k次,问交换完后的子序列最大值的最大值是多少 思路:暴力枚举每一个区间,然后每一个区间[l,r]之内的值先存在优先队列内, ...

随机推荐

  1. JavaScript 中 apply 、call 的详解

    apply 和 call 的区别 ECMAScript 规范给所有函数都定义了 call 与 apply 两个方法,它们的应用非常广泛,它们的作用也是一模一样,只是传参的形式有区别而已. 原文作者:林 ...

  2. 人工智能技术实践篇:espeak开发环境调试

    一.前言 1.espeak版本: espeak-1.48.04-source 2.开发环境:VC+2015 二.正文 2.1 错误提示 LNK1104: cannot open file 'LIBC. ...

  3. [置顶] Xamarin android沉浸式状态栏

    虽然关于android "沉浸式"状态栏有很多博客介绍过,从小菜到大神无一例外.我第一次看到这种"沉浸"式的效果我也以为真的是这么叫,然而根本不是这么回事,完全 ...

  4. ES6 let和const命令(3)

    const 用来声明常量.一旦声明,就不能改变. const在声明必须初始化,只声明不赋值会出错 const的作用域与let一样,只在声明的块级作用域有效. const命令声明的常量也不提升,同样存在 ...

  5. 1、opencv-2.4.7.2的安装和vs2010的配置

    参考大牛们的资料,动手操作了一遍,不算太复杂,和vs2008不同,有几点需要注意,cv2.4.7.2版本没有vc9,所以无法在2008上使用(呵呵,我瞎猜的) 1.下载安装 下载http://sour ...

  6. locust 参数,数据详解

    参数    说明-h, –help    查看帮助-H HOST, –host=HOST    指定被测试的主机,采用以格式:http://10.21.32.33–web-host=WEB_HOST  ...

  7. 房上的猫:java中的包

    包 1.作用:  (1)包允许将类组合成较小的单元(类似文件夹),易于找到和使用相应的类文件  (2)防止命名冲突:    java中只有在不同包中的类才能重名  (3)包允许在更广的范围内保护类,数 ...

  8. windows安装ipython的困难重重

    本机环境 系统: windows 10 64位 python版本:3.2.1 安装过程 安装ipython可以使用python的pip工具 pip install ipython 在使用pip前,我准 ...

  9. 第九章 BootstrapTable的使用

    一.简介 BootstrapTable是一个Bootstrap 3 的表格插件,支持单选, 复选框, 排序, 分页等功能 官网:http://bootstrap-table.wenzhixin.net ...

  10. Optimize For Ad Hoc Workloads

    --临时工作负载优化   即席查询:也就是查询完没放到Cache当中,每次查询都要重新经过编译,并发高的时候很耗性能: 参数化查询: 一方面解决了重编译问题,但随着数据库数据数据的变更,统计信息的更新 ...