python apschedule安装使用与源码分析
我们的项目中用apschedule作为核心定时调度模块。所以对apschedule进行了一些调查和源码级的分析。
1、为什么选择apschedule?
听信了一句话,apschedule之于python就像是quartz之于java。实际用起来还是不错的。
2、安装
# pip安装方式
$ pip install apscheduler
# 源码编译方式
$ wget https://pypi.python.org/pypi/APScheduler/#downloads
$ python setup.py install
3、apschedule有四个主要的组件
1)trigger - 触发器
2)job stores - 任务存储(内存memory和持久化persistence)
3)executor - 执行器(实现是基于concurrent.futures的线程池或者进程池)
4)schedulers - 调度器(控制着其他的组件,最常用的是background方式和blocking方式)
先上一个例子
# -*- coding:utf-8 -*-
import redis
from datetime import datetime, timedelta
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.redis import RedisJobStore
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor
from apscheduler.events import EVENT_JOB_MAX_INSTANCES, EVENT_JOB_ERROR, EVENT_JOB_MISSED
class ScheduleFactory(object):
def __init__(self):
if not hasattr(ScheduleFactory, '__scheduler'):
__scheduler = ScheduleFactory.get_instance()
self.scheduler = __scheduler @staticmethod
def get_instance():
pool = redis.ConnectionPool(
host='10.94.99.56',
port=6379,
)
r = redis.StrictRedis(connection_pool=pool)
jobstores = {
'redis': RedisJobStore(2, r),
'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {
'default': ThreadPoolExecutor(max_workers=30),
'processpool': ProcessPoolExecutor(max_workers=30)
}
job_defaults = {
'coalesce': False,
'max_instances': 3
}
scheduler = BackgroundScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults, daemonic=False)
return scheduler
说明:上例中,scheduleFactory被实现为一个单例模式,保证new出的对象全局唯一
4、对scheduler的选择
这里只给出两个场景:
1)BackgroundScheduler:这种方式在创建scheduler的父进程退出后,任务同时停止调度。适用范围:集成在服务中,例如django。
2)BlockingScheduler:这种方式会阻塞住创建shceduler的进程,适用范围:该程序只干调度这一件事情。
选择完调度器之后
1)scheduler.start() 启动调度器
2)scheduler.shutdown() 停止调度器,调用该方法,调度器等到所有执行中的任务执行完成再退出,可以使用wait=False禁用
程序变为如下样子
class ScheduleFactory(object):
def __init__(self):
if not hasattr(ScheduleFactory, '__scheduler'):
__scheduler = ScheduleFactory.get_instance()
self.scheduler = __scheduler @staticmethod
def get_instance():
pool = redis.ConnectionPool(
host='10.94.99.56',
port=6379,
)
r = redis.StrictRedis(connection_pool=pool)
jobstores = {
'redis': RedisJobStore(2, r),
'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {
'default': ThreadPoolExecutor(max_workers=30),
'processpool': ProcessPoolExecutor(max_workers=30)
}
job_defaults = {
'coalesce': False,
'max_instances': 3
}
scheduler = BackgroundScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults, daemonic=False)
# scheduler = BlockingScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults, daemonic=False)
return scheduler def start(self):
self.scheduler.start() def shutdown(self):
self.scheduler.shutdown()
5、对jobstores的选择
大的方向有两个:
1)非持久化
可选的stores:MemoryJobStrore
适用于你不会频繁启动和关闭调度器,而且对定时任务丢失批次不敏感。
2)持久化
可选的stores:SQLAlchemyJobStore, RedisJobStore,MongoDBJobStore,ZooKeeperJobStore
适用于你对定时任务丢失批次敏感的情况
jobStores初始化配置的方式是使用一个字典,例如
jobstores = {
'redis': RedisJobStore(2, r),
'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
key是你配置store的名字,后面在添加任务的使用,可以指定对应的任务使用对应的store,例如这里选用的都是key=default的store。
def add_job(self, job_func, interval, id, job_func_params=None)
self.scheduler.add_job(job_func, jobstore='default', trigger='interval', seconds=interval, id=id, kwargs=job_func_params, executor='default', next_run_time=next_run_time, misfire_grace_time=30)
6、executor的选择
只说两个,线程池和进程池。默认default是线程池方式。这个数是执行任务的实际并发数,如果你设置的小了而job添加的比较多,可能出现丢失调度的情况。
同时对于python多线程场景,如果是计算密集型任务,实际的并发度达不到配置的数量。所以这个数字要根据具体的要求设置。
一般来说我们设置并发为30,对一般的场景是没有问题的。
executors = {
'default': ThreadPoolExecutor(max_workers=30),
'processpool': ProcessPoolExecutor(max_workers=30)
}
同样在add_job的时候,我们可以选择对应的执行器
def add_job(self, job_func, interval, id, job_func_params=None)
self.scheduler.add_job(job_func, jobstore='default', trigger='interval', seconds=interval, id=id, kwargs=job_func_params, executor='default', next_run_time=next_run_time, misfire_grace_time=30)
7、trigger的选择
这是最简单的一个了,有三种,不用配置
1、date - 每天的固定时间
2、interval - 间隔多长时间执行
3、cron - 正则
8、job的增删改查接口api可以参看手册
http://apscheduler.readthedocs.io/en/latest/userguide.html#choosing-the-right-scheduler-job-store-s-executor-s-and-trigger-s
9、问题fix
1)2017-07-24 14:06:28,480 [apscheduler.executors.default:120] [WARNING]- Run time of job "etl_func (trigger: interval[0:01:00], next run at: 2017-07-24 14:07:27 CST)" was missed by 0:00:01.245424
这个问题对应的源码片段是
def run_job(job, jobstore_alias, run_times, logger_name):
"""
Called by executors to run the job. Returns a list of scheduler events to be dispatched by the
scheduler. """
events = []
logger = logging.getLogger(logger_name)
for run_time in run_times:
# See if the job missed its run time window, and handle
# possible misfires accordingly
if job.misfire_grace_time is not None:
difference = datetime.now(utc) - run_time
grace_time = timedelta(seconds=job.misfire_grace_time)
if difference > grace_time:
events.append(JobExecutionEvent(EVENT_JOB_MISSED, job.id, jobstore_alias,
run_time))
logger.warning('Run time of job "%s" was missed by %s', job, difference)
continue logger.info('Running job "%s" (scheduled at %s)', job, run_time)
try:
retval = job.func(*job.args, **job.kwargs)
except:
exc, tb = sys.exc_info()[1:]
formatted_tb = ''.join(format_tb(tb))
events.append(JobExecutionEvent(EVENT_JOB_ERROR, job.id, jobstore_alias, run_time,
exception=exc, traceback=formatted_tb))
logger.exception('Job "%s" raised an exception', job)
else:
events.append(JobExecutionEvent(EVENT_JOB_EXECUTED, job.id, jobstore_alias, run_time,
retval=retval))
logger.info('Job "%s" executed successfully', job) return events
这里面有个参数是misfire_grace_time,默认是1s,如果任务的实际执行时间与任务调度时间的时间差>misfire_grace_time,就会warning并且跳过这次任务的调度!!!
为什么会发生这个问题?
1)executor并发度不够,你添加的任务太多
2) misfire_grace_time,还是太小了
2)如果你使用的trigger=interval,并且设置了misfire_grace_time=30这种的话,如果你首次启动的时间是10:50那么调度间隔和实际执行可能有1分钟的误差
怎么解决这个问题呢,你可以通过next_run_time设置首次调度的时间,让这个时间取整分钟。例如
def add_job(self, job_func, interval, id, job_func_params=None):
next_minute = (datetime.now() + timedelta(minutes=1)).strftime("%Y-%m-%d %H:%M")
next_run_time = datetime.strptime(next_minute, "%Y-%m-%d %H:%M")
self.scheduler.add_job(job_func, jobstore='default', trigger='interval', seconds=interval, id=id, kwargs=job_func_params, executor='default', next_run_time=next_run_time, misfire_grace_time=30)
3)2017-07-25 11:02:00,003 [apscheduler.scheduler:962] [WARNING]- Execution of job "rule_func (trigger: interval[0:01:00], next run at: 2017-07-25 11:02:00 CST)" skipped: maximum number of running instances reached (1)
对应的源码为
for job in due_jobs:
# Look up the job's executor
try:
executor = self._lookup_executor(job.executor)
except:
self._logger.error(
'Executor lookup ("%s") failed for job "%s" -- removing it from the '
'job store', job.executor, job)
self.remove_job(job.id, jobstore_alias)
continue run_times = job._get_run_times(now)
run_times = run_times[-1:] if run_times and job.coalesce else run_times
if run_times:
try:
executor.submit_job(job, run_times)
except MaxInstancesReachedError:
self._logger.warning(
'Execution of job "%s" skipped: maximum number of running '
'instances reached (%d)', job, job.max_instances)
event = JobSubmissionEvent(EVENT_JOB_MAX_INSTANCES, job.id,
jobstore_alias, run_times)
events.append(event)
submit_job的源码
with self._lock:
if self._instances[job.id] >= job.max_instances:
raise MaxInstancesReachedError(job) self._do_submit_job(job, run_times)
self._instances[job.id] += 1
这是什么意思呢,当对一个job的一次调度的任务数>max_instances,会触发这个异常,并终止调度。例如对一个批次的调度,比如job1,在10:00这次的调度,执行的时候发现有两个任务被添加了。这怎么会发生呢?会。可能09:59分的调度没有成功执行,但是持久化了下来,那么在10:00会尝试再次执行。
max_instances默认是1,如果想让这种异常放过的话,你可以设置max_instances大一些,比如max_instances=3
10、如果你想监控你的调度,那么apschedule提供了listener机制,可以监听一些异常。只需要注册监听者就好
def add_err_listener(self):
self.scheduler.add_listener(err_listener, EVENT_JOB_MAX_INSTANCES|EVENT_JOB_MISSED|EVENT_JOB_ERROR) def err_listener(ev):
msg = ''
if ev.code == EVENT_JOB_ERROR:
msg = ev.traceback
elif ev.code == EVENT_JOB_MISSED:
msg = 'missed job, job_id:%s, schedule_run_time:%s' % (ev.job_id, ev.scheduled_run_time)
elif ev.code == EVENT_JOB_MAX_INSTANCES:
msg = 'reached maximum of running instances, job_id:%s' %(ev.job_id)
rs = RobotSender()
rs.send(
"https://oapi.dingtalk.com/robot/send?access_token=499ca69a2b45402c00503acea611a6ae6a2f1bacb0ca4d33365595d768bb2a58",
u"[apscheduler调度异常] 异常信息:%s" % (msg),
'',
False
)
最后的代码
# -*- coding:utf-8 -*-
import redis
from datetime import datetime, timedelta
from apscheduler.schedulers.background import BackgroundScheduler, BlockingScheduler
from apscheduler.jobstores.redis import RedisJobStore
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor
from apscheduler.events import EVENT_JOB_MAX_INSTANCES, EVENT_JOB_ERROR, EVENT_JOB_MISSED
from alarmkits.send_robot import RobotSender class ScheduleFactory(object):
def __init__(self):
if not hasattr(ScheduleFactory, '__scheduler'):
__scheduler = ScheduleFactory.get_instance()
self.scheduler = __scheduler @staticmethod
def get_instance():
pool = redis.ConnectionPool(
host='10.94.99.56',
port=6379,
)
r = redis.StrictRedis(connection_pool=pool)
jobstores = {
'redis': RedisJobStore(2, r),
'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {
'default': ThreadPoolExecutor(max_workers=30),
'processpool': ProcessPoolExecutor(max_workers=30)
}
job_defaults = {
'coalesce': False,
'max_instances': 3
}
scheduler = BackgroundScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults, daemonic=False)
# scheduler = BlockingScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults, daemonic=False)
return scheduler def start(self):
self.scheduler.start() def shutdown(self):
self.scheduler.shutdown() def add_job(self, job_func, interval, id, job_func_params=None):
next_minute = (datetime.now() + timedelta(minutes=1)).strftime("%Y-%m-%d %H:%M")
next_run_time = datetime.strptime(next_minute, "%Y-%m-%d %H:%M")
self.scheduler.add_job(
job_func,
jobstore='default',
trigger='interval',
seconds=interval,
id=id,
kwargs=job_func_params,
executor='default',
next_run_time=next_run_time,
misfire_grace_time=30,
max_instances=3
) def remove_job(self, id):
self.scheduler.remove_job(id) def modify_job(self, id, interval):
self.scheduler.modify_job(job_id=id, seconds=interval) def add_err_listener(self):
self.scheduler.add_listener(err_listener, EVENT_JOB_MAX_INSTANCES|EVENT_JOB_MISSED|EVENT_JOB_ERROR) def err_listener(ev):
msg = ''
if ev.code == EVENT_JOB_ERROR:
msg = ev.traceback
elif ev.code == EVENT_JOB_MISSED:
msg = 'missed job, job_id:%s, schedule_run_time:%s' % (ev.job_id, ev.scheduled_run_time)
elif ev.code == EVENT_JOB_MAX_INSTANCES:
msg = 'reached maximum of running instances, job_id:%s' %(ev.job_id)
rs = RobotSender()
rs.send(
"https://oapi.dingtalk.com/robot/send?access_token=499ca69a2b45402c00503acea611a6ae6a2f1bacb0ca4d33365595d768bb2a58",
u"[apscheduler调度异常] 异常信息:%s" % (msg),
'',
False
)
python apschedule安装使用与源码分析的更多相关文章
- cstore_fdw的安装使用以及源码分析
一.cstore_fdw的简介 https://github.com/citusdata/cstore_fdw,此外部表扩展是由citusdata公司开发,使用RC_file格式对数据进行列式存储. ...
- python 从SocketServer到 WSGIServer 源码分析、
python 下有个wsgi的封装库.wsgiref. WSGI 指的是 Web服务器网关接口(Python Web Server Gateway Interface) django的runserve ...
- Python之Django rest_Framework框架源码分析
#!/usr/bin/env python # -*- coding:utf-8 -*- from rest_framework.views import APIView from rest_fram ...
- Python之contextlib库及源码分析
Utilities for with-statement contexts __all__ = ["contextmanager", "closing", &q ...
- Python yield与实现(源码分析 转)
转自:https://www.cnblogs.com/coder2012/p/4990834.html
- [python] 基于词云的关键词提取:wordcloud的使用、源码分析、中文词云生成和代码重写
1. 词云简介 词云,又称文字云.标签云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思.常见于博客.微博 ...
- angular源码分析:angular源代码的获取与编译环境安装
一.安装git客户端 1.windows环境推荐使用TortoiseGit. 官网地址:http://tortoisegit.org 下载地址:http://tortoisegit.org/downl ...
- Python之美[从菜鸟到高手]--urlparse源码分析
urlparse是用来解析url格式的,url格式如下:protocol :// hostname[:port] / path / [;parameters][?query]#fragment,其中; ...
- eos源码分析和应用(一)调试环境搭建
转载自 http://www.limerence2017.com/2018/09/02/eos1/#more eos基于区块链技术实现的开源引擎,开发人员可以基于该引擎开发DAPP(分布式应用).下面 ...
随机推荐
- Linux下设置Tomcat虚拟路径
问题描述:我在上传图片的位置不在Tomcat服务器下,用户无法访问 解决方案:配置Tomcat虚拟路径使用户可以访问图片 配置Tomcat # cd /usr/local/apache-tomcat- ...
- Adobe Flash Player 因过期而遭遇阻止怎么办
百度搜索"adobe flash player ppapi "并找到搜索结果中包含www.adobe.com的网址进行在线下载安装即可搞定这个问题[注意要对应你电脑系统中的浏览器, ...
- 五个数据段之代码段、数据段、BSS、栈、堆
继上文讲完了对内存管理的一些知识,下面笔者再对上篇文章的内容加以拓展,那么我们今天就来说一说5个数据段 五个数据段 进程(执行的程序)会占用一定数量的内存,它或是用来存放磁盘载入的程序代码,或是存放取 ...
- 【Alpha】阶段 第七次 Scrum Meeting
每日任务 1.本次会议为第一次 Meeting会议: 2.本次会议在下午14:45,课间休息时间在禹州楼召开,召开本次会议为10分钟,根据大家的讨论分析得出的总结,讨论下接下来版本的改进计划: 一.今 ...
- 201521123014 《Java程序设计》第4周学习总结
1. 本周学习总结 1.1 有关继承的知识点 1.2 使用常规方法总结其他上课内容 多态性 相同的形态,不同的行为 例子: public class Manager extends Employee{ ...
- 201521123104 《JAVA程序设计》第二周学习总结
1. 本周学习总结 认识了JAVA编程中一些类型与变量,了解了一些基本运算符的使用 变量在命名时,不可以使用数字或一些特殊字符作为开头 不可以声明局部变量后未指定任何值给它之前就使用变量 在程序中写下 ...
- 201521123019 《java程序设计》 第13周学习总结
1. 本章学习总结 2. 书面作业 Q1. 网络基础 1.1 比较ping www.baidu.com与ping cec.jmu.edu.cn,分析返回结果有何不同?为什么会有这样的不同? 访问cec ...
- 2017年9月19日 JavaScript语法操作
关于JavaScript个人还是觉得比较有意思的 {在</html>后面写或者在</body>前面写(必须紧贴</body>)} <script> va ...
- Play使用
play框架 打包命令: play war e:/codes/cn.ngmc.frontend -o f:/backup_ngmc/20160614frontend_001Dev; 即:p ...
- 警惕Java编译器中那些“蜜糖”陷阱
一.前言 随着Java编译器不断地向前发展,它为程序员们提供了越来越多的“蜜糖”(compiler suger),极大地方便了程序的开发,例如,foreach的增强模式,自动拆箱与装箱以及字符串的连接 ...