Customer segmentation – LifeCycle Grids, CLV and CAC with R(转)
We studied a very powerful approach for customer segmentation in the previous post, which is based on the customer’s lifecycle. We used two metrics: frequency and recency. It is also possible and very helpful to add monetary value to our segmentation. If you havecustomer acquisition cost (CAC) and customer lifetime value (CLV), you can easily add these data to the calculations.
We will create the same data sample as in the previous post, but with two added data frames:
- cac, our expenses for each customer acquisition,
- gr.margin, gross margin of each product.
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
# loading librarieslibrary(dplyr)library(reshape2)library(ggplot2)# creating data sampleset.seed(10)data <- data.frame(orderId=sample(c(1:1000), 5000, replace=TRUE),product=sample(c('NULL','a','b','c'), 5000, replace=TRUE,prob=c(0.15, 0.65, 0.3, 0.15)))order <- data.frame(orderId=c(1:1000),clientId=sample(c(1:300), 1000, replace=TRUE))gender <- data.frame(clientId=c(1:300),gender=sample(c('male', 'female'), 300, replace=TRUE, prob=c(0.40, 0.60)))date <- data.frame(orderId=c(1:1000),orderdate=sample((1:100), 1000, replace=TRUE))orders <- merge(data, order, by='orderId')orders <- merge(orders, gender, by='clientId')orders <- merge(orders, date, by='orderId')orders <- orders[orders$product!='NULL', ]orders$orderdate <- as.Date(orders$orderdate, origin="2012-01-01")# creating data frames with CAC and Gross margincac <- data.frame(clientId=unique(orders$clientId), cac=sample(c(10:15), 289, replace=TRUE))gr.margin <- data.frame(product=c('a', 'b', 'c'), grossmarg=c(1, 2, 3))rm(data, date, order, gender) |
Next, we will calculate CLV to date (actual amount that we earned) using gross margin values and orders of the products. We will use the following code:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
# reporting datetoday <- as.Date('2012-04-11', format='%Y-%m-%d')# calculating customer lifetime valueorders <- merge(orders, gr.margin, by='product')clv <- orders %>%group_by(clientId) %>%summarise(clv=sum(grossmarg))# processing dataorders <- dcast(orders, orderId + clientId + gender + orderdate ~ product, value.var='product', fun.aggregate=length)orders <- orders %>%group_by(clientId) %>%mutate(frequency=n(),recency=as.numeric(today-orderdate)) %>%filter(orderdate==max(orderdate)) %>%filter(orderId==max(orderId))orders.segm <- orders %>%mutate(segm.freq=ifelse(between(frequency, 1, 1), '1',ifelse(between(frequency, 2, 2), '2',ifelse(between(frequency, 3, 3), '3',ifelse(between(frequency, 4, 4), '4',ifelse(between(frequency, 5, 5), '5', '>5')))))) %>%mutate(segm.rec=ifelse(between(recency, 0, 6), '0-6 days',ifelse(between(recency, 7, 13), '7-13 days',ifelse(between(recency, 14, 19), '14-19 days',ifelse(between(recency, 20, 45), '20-45 days',ifelse(between(recency, 46, 80), '46-80 days', '>80 days')))))) %>%# creating last cart featuremutate(cart=paste(ifelse(a!=0, 'a', ''),ifelse(b!=0, 'b', ''),ifelse(c!=0, 'c', ''), sep='')) %>%arrange(clientId)# defining order of boundariesorders.segm$segm.freq <- factor(orders.segm$segm.freq, levels=c('>5', '5', '4', '3', '2', '1'))orders.segm$segm.rec <- factor(orders.segm$segm.rec, levels=c('>80 days', '46-80 days', '20-45 days', '14-19 days', '7-13 days', '0-6 days')) |
Note: if you prefer to use potential/expected/predicted CLV or total CLV (sum of CLV to date and potential CLV) you can adapt this code or find the example in the next post.
In addition, we need to merge orders.segm with the CAC and CLV data, and combine the data with the segments. We will calculate total CAC and CLV to date, as well as their average with the following code:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
orders.segm <- merge(orders.segm, cac, by='clientId')orders.segm <- merge(orders.segm, clv, by='clientId')lcg.clv <- orders.segm %>%group_by(segm.rec, segm.freq) %>%summarise(quantity=n(),# calculating cumulative CAC and CLVcac=sum(cac),clv=sum(clv)) %>%ungroup() %>%# calculating CAC and CLV per clientmutate(cac1=round(cac/quantity, 2),clv1=round(clv/quantity, 2))lcg.clv <- melt(lcg.clv, id.vars=c('segm.rec', 'segm.freq', 'quantity')) |
Ok, let’s plot two charts: the first one representing the totals and the second one representing the averages:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
ggplot(lcg.clv[lcg.clv$variable %in% c('clv', 'cac'), ], aes(x=variable, y=value, fill=variable)) +theme_bw() +theme(panel.grid = element_blank())+geom_bar(stat='identity', alpha=0.6, aes(width=quantity/max(quantity))) +geom_text(aes(y=value, label=value), size=4) +facet_grid(segm.freq ~ segm.rec) +ggtitle("LifeCycle Grids - CLV vs CAC (total)")ggplot(lcg.clv[lcg.clv$variable %in% c('clv1', 'cac1'), ], aes(x=variable, y=value, fill=variable)) +theme_bw() +theme(panel.grid = element_blank())+geom_bar(stat='identity', alpha=0.6, aes(width=quantity/max(quantity))) +geom_text(aes(y=value, label=value), size=4) +facet_grid(segm.freq ~ segm.rec) +ggtitle("LifeCycle Grids - CLV vs CAC (average)") |


You can find in the grid that the width of bars depends on the number of customers. I think these visualizations are very helpful. You can see the difference between CLV to dateand CAC and make decisions about on paid campaigns or initiatives like:
- does it make sense to spend extra money to reactivate some customers (e.g. those who are in the “1 order / >80 days“ grid or those who are in the “>5 orders / 20-45 days“ grid)?,
- how much money is appropriate to spend?,
- and so on.
Therefore, we have got a very interesting visualization. We can analyze and make decisions based on the three customer lifecycle metrics: recency, frequency andmonetary value.
Thank you for reading this!
转自:http://analyzecore.com/2015/02/19/customer-segmentation-lifecycle-grids-clv-and-cac-with-r/
Customer segmentation – LifeCycle Grids, CLV and CAC with R(转)的更多相关文章
- Customer segmentation – LifeCycle Grids with R(转)
I want to share a very powerful approach for customer segmentation in this post. It is based on cust ...
- Cohort Analysis and LifeCycle Grids mixed segmentation with R(转)
This is the third post about LifeCycle Grids. You can find the first post about the sense of LifeCyc ...
- Appboy 基于 MongoDB 的数据密集型实践
摘要:Appboy 正在过手机等新兴渠道尝试一种新的方法,让机构可以与顾客建立更好的关系,可以说是市场自动化产业的一个前沿探索者.在移动端探索上,该公司已经取得了一定的成功,知名产品有 iHeartM ...
- ML.NET教程之客户细分(聚类问题)
理解问题 客户细分需要解决的问题是按照客户之间的相似特征区分不同客户群体.这个问题的先决条件中没有可供使用的客户分类列表,只有客户的人物画像. 数据集 已有的数据是公司的历史商业活动记录以及客户的购买 ...
- CRM 建设方案(01):CRM基础
CRM 客户关系管理系统基础 客户关系管理简称CRM(Customer Relationship Management).CRM概念引入中国已有数年,其字面意思是客户关系管理,但其深层的内涵却有着许多 ...
- python excel 文件合并
Combining Data From Multiple Excel Files Introduction A common task for python and pandas is to auto ...
- Ninject之旅之六:Ninject约定
摘要 在小的应用系统中一个一个注册一些服务类型不怎么困难.但是,如果是一个实际的有上百个服务的应用程序呢?约定配置允许我们使用约定绑定一组服务,而不用一个一个分别绑定. 要使用约定配置,需要添加Nin ...
- 沈阳润才教育CRM
一.CRM初始 CRM,客户关系管理系统(Customer Relationship Management).企业用CRM技术来管理与客户之间的关系,以求提升企业成功的管理方式,其目的是协助企业管理销 ...
- python 全栈开发,Day107(CRM初始,权限组件之权限控制,权限系统表设计)
一.CRM初始 CRM,客户关系管理系统(Customer Relationship Management).企业用CRM技术来管理与客户之间的关系,以求提升企业成功的管理方式,其目的是协助企业管理销 ...
随机推荐
- webscoket实战之利用httpsession定向推送
webscoket实战之利用httpsession定向推送 开发框架 springboot 场景 在利用websocket主动推送信息给客户端的过程中,经常会遇到一个普遍需求,就是推送的消息要定向推送 ...
- MySQL的loop循环函数的demo
使用的工具是Navicat for MySQL. 在MySQL中用函数实现在字符串一后面循环拼接n个字符串二 delimiter $$ drop function if exists fun_addS ...
- JQ实现选中以后就左右移动
<head> <meta charset="utf-8" /> <title>select_option移动</title> < ...
- java复习(5)---接口、继承、多态
Java作为完全面向对象语言,接口.继承和多态是三个非常重要的概念. 1.继承. (1)关键字: extends (2)子类用super()调用父类构造函数,用super().方法 调用父类的成员方法 ...
- wow.js中各种特效对应的类名
一.(页面在向下滚动的时候,有些元素会产生细小的动画效果.虽然动画比较小,但却能吸引你的注意.) 刚知道wow.js这个插件,之前访问别的网站下拉滚动条会出现各种效果感觉特别神奇,现在自己依葫芦画瓢也 ...
- AngularJS创建新指令 - 基本功能
指令(Directives)是所有AngularJS应用最重要的部分.尽管AngularJS已经提供了非常丰富的指令,但还是经常需要创建应用特定的指令. AngularJS原有的指令 ng-init ...
- Winform 使用DotNetBar 根据菜单加载TabControl
winform 如何使用TabControl 控件来做winform界面框架? 这样的效果: 首先菜单的窗口展示的承载器为TabControl 控件,这个控件本身包含多页面预览和页面初始化. 如图所示 ...
- python——进程、线程、协程
Python线程 Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #!/usr/bin/env pytho ...
- setTimeout 倒计时
<script type="text/javascript"> //设定倒数秒数 var t = 10; //显示倒数秒数 function showTime(){ t ...
- Angularjs快速入门(四)-css类和样式
例子: .error{background-color:red;} .warning{background-color:yellow;} <div ng-controller='HeaderCo ...