We studied a very powerful approach for customer segmentation in the previous post, which is based on the customer’s lifecycle. We used two metrics: frequency and recency. It is also possible and very helpful to add monetary value to our segmentation. If you havecustomer acquisition cost (CAC) and customer lifetime value (CLV), you can easily add these data to the calculations.

We will create the same data sample as in the previous post, but with two added data frames:

  • cac, our expenses for each customer acquisition,
  • gr.margin, gross margin of each product.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# loading libraries
library(dplyr)
library(reshape2)
library(ggplot2)
 
# creating data sample
set.seed(10)
data <- data.frame(orderId=sample(c(1:1000), 5000, replace=TRUE),
product=sample(c('NULL','a','b','c'), 5000, replace=TRUE,
prob=c(0.15, 0.65, 0.3, 0.15)))
order <- data.frame(orderId=c(1:1000),
clientId=sample(c(1:300), 1000, replace=TRUE))
gender <- data.frame(clientId=c(1:300),
gender=sample(c('male', 'female'), 300, replace=TRUE, prob=c(0.40, 0.60)))
date <- data.frame(orderId=c(1:1000),
orderdate=sample((1:100), 1000, replace=TRUE))
orders <- merge(data, order, by='orderId')
orders <- merge(orders, gender, by='clientId')
orders <- merge(orders, date, by='orderId')
orders <- orders[orders$product!='NULL', ]
orders$orderdate <- as.Date(orders$orderdate, origin="2012-01-01")
 
# creating data frames with CAC and Gross margin
cac <- data.frame(clientId=unique(orders$clientId), cac=sample(c(10:15), 289, replace=TRUE))
gr.margin <- data.frame(product=c('a', 'b', 'c'), grossmarg=c(1, 2, 3))
 
rm(data, date, order, gender)

Next, we will calculate CLV to date (actual amount that we earned) using gross margin values and orders of the products. We will use the following code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# reporting date
today <- as.Date('2012-04-11', format='%Y-%m-%d')
 
# calculating customer lifetime value
orders <- merge(orders, gr.margin, by='product')
 
clv <- orders %>%
group_by(clientId) %>%
summarise(clv=sum(grossmarg))
 
# processing data
orders <- dcast(orders, orderId + clientId + gender + orderdate ~ product, value.var='product', fun.aggregate=length)
 
orders <- orders %>%
group_by(clientId) %>%
mutate(frequency=n(),
recency=as.numeric(today-orderdate)) %>%
filter(orderdate==max(orderdate)) %>%
filter(orderId==max(orderId))
 
orders.segm <- orders %>%
mutate(segm.freq=ifelse(between(frequency, 1, 1), '1',
ifelse(between(frequency, 2, 2), '2',
ifelse(between(frequency, 3, 3), '3',
ifelse(between(frequency, 4, 4), '4',
ifelse(between(frequency, 5, 5), '5', '>5')))))) %>%
mutate(segm.rec=ifelse(between(recency, 0, 6), '0-6 days',
ifelse(between(recency, 7, 13), '7-13 days',
ifelse(between(recency, 14, 19), '14-19 days',
ifelse(between(recency, 20, 45), '20-45 days',
ifelse(between(recency, 46, 80), '46-80 days', '>80 days')))))) %>%
# creating last cart feature
mutate(cart=paste(ifelse(a!=0, 'a', ''),
ifelse(b!=0, 'b', ''),
ifelse(c!=0, 'c', ''), sep='')) %>%
arrange(clientId)
 
# defining order of boundaries
orders.segm$segm.freq <- factor(orders.segm$segm.freq, levels=c('>5', '5', '4', '3', '2', '1'))
orders.segm$segm.rec <- factor(orders.segm$segm.rec, levels=c('>80 days', '46-80 days', '20-45 days', '14-19 days', '7-13 days', '0-6 days'))

Note: if you prefer to use potential/expected/predicted CLV or total CLV (sum of CLV to date and potential CLV) you can adapt this code or find the example in the next post.

In addition, we need to merge orders.segm with the CAC and CLV data, and combine the data with the segments. We will calculate total CAC and CLV to date, as well as their average with the following code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
orders.segm <- merge(orders.segm, cac, by='clientId')
orders.segm <- merge(orders.segm, clv, by='clientId')
 
lcg.clv <- orders.segm %>%
group_by(segm.rec, segm.freq) %>%
summarise(quantity=n(),
# calculating cumulative CAC and CLV
cac=sum(cac),
clv=sum(clv)) %>%
ungroup() %>%
# calculating CAC and CLV per client
mutate(cac1=round(cac/quantity, 2),
clv1=round(clv/quantity, 2))
 
lcg.clv <- melt(lcg.clv, id.vars=c('segm.rec', 'segm.freq', 'quantity'))

Ok, let’s plot two charts: the first one representing the totals and the second one representing the averages:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
ggplot(lcg.clv[lcg.clv$variable %in% c('clv', 'cac'), ], aes(x=variable, y=value, fill=variable)) +
theme_bw() +
theme(panel.grid = element_blank())+
geom_bar(stat='identity', alpha=0.6, aes(width=quantity/max(quantity))) +
geom_text(aes(y=value, label=value), size=4) +
facet_grid(segm.freq ~ segm.rec) +
ggtitle("LifeCycle Grids - CLV vs CAC (total)")
ggplot(lcg.clv[lcg.clv$variable %in% c('clv1', 'cac1'), ], aes(x=variable, y=value, fill=variable)) +
theme_bw() +
theme(panel.grid = element_blank())+
geom_bar(stat='identity', alpha=0.6, aes(width=quantity/max(quantity))) +
geom_text(aes(y=value, label=value), size=4) +
facet_grid(segm.freq ~ segm.rec) +
ggtitle("LifeCycle Grids - CLV vs CAC (average)")

You can find in the grid that the width of bars depends on the number of customers. I think these visualizations are very helpful. You can see the difference between CLV to dateand CAC and make decisions about on paid campaigns or initiatives like:

  • does it make sense to spend extra money to reactivate some customers (e.g. those who are in the “1 order / >80 days“ grid or those who are in the “>5 orders / 20-45 days“ grid)?,
  • how much money is appropriate to spend?,
  • and so on.

Therefore, we have got a very interesting visualization. We can analyze and make decisions based on the three customer lifecycle metrics: recency, frequency andmonetary value.

Thank you for reading this!

转自:http://analyzecore.com/2015/02/19/customer-segmentation-lifecycle-grids-clv-and-cac-with-r/

Customer segmentation – LifeCycle Grids, CLV and CAC with R(转)的更多相关文章

  1. Customer segmentation – LifeCycle Grids with R(转)

    I want to share a very powerful approach for customer segmentation in this post. It is based on cust ...

  2. Cohort Analysis and LifeCycle Grids mixed segmentation with R(转)

    This is the third post about LifeCycle Grids. You can find the first post about the sense of LifeCyc ...

  3. Appboy 基于 MongoDB 的数据密集型实践

    摘要:Appboy 正在过手机等新兴渠道尝试一种新的方法,让机构可以与顾客建立更好的关系,可以说是市场自动化产业的一个前沿探索者.在移动端探索上,该公司已经取得了一定的成功,知名产品有 iHeartM ...

  4. ML.NET教程之客户细分(聚类问题)

    理解问题 客户细分需要解决的问题是按照客户之间的相似特征区分不同客户群体.这个问题的先决条件中没有可供使用的客户分类列表,只有客户的人物画像. 数据集 已有的数据是公司的历史商业活动记录以及客户的购买 ...

  5. CRM 建设方案(01):CRM基础

    CRM 客户关系管理系统基础 客户关系管理简称CRM(Customer Relationship Management).CRM概念引入中国已有数年,其字面意思是客户关系管理,但其深层的内涵却有着许多 ...

  6. python excel 文件合并

    Combining Data From Multiple Excel Files Introduction A common task for python and pandas is to auto ...

  7. Ninject之旅之六:Ninject约定

    摘要 在小的应用系统中一个一个注册一些服务类型不怎么困难.但是,如果是一个实际的有上百个服务的应用程序呢?约定配置允许我们使用约定绑定一组服务,而不用一个一个分别绑定. 要使用约定配置,需要添加Nin ...

  8. 沈阳润才教育CRM

    一.CRM初始 CRM,客户关系管理系统(Customer Relationship Management).企业用CRM技术来管理与客户之间的关系,以求提升企业成功的管理方式,其目的是协助企业管理销 ...

  9. python 全栈开发,Day107(CRM初始,权限组件之权限控制,权限系统表设计)

    一.CRM初始 CRM,客户关系管理系统(Customer Relationship Management).企业用CRM技术来管理与客户之间的关系,以求提升企业成功的管理方式,其目的是协助企业管理销 ...

随机推荐

  1. windows下nginx的安装及使用方法入门

    nginx功能之一可以启动一个本地服务器,通过配置server_name和root目录等来访问目标文件 一. 下载 http://nginx.org/   下载后解压   二. 修改配置文件 ngin ...

  2. 第十章 MyBatis入门

    第十章   MyBatis入门10.1 MyBatis入门        优点:简单且功能强大.能够完全控制SQL语句.容易维护和修改    缺点:移植性不好    使用步骤:        1.下载 ...

  3. 如何用unity3d实现发送带附件的邮件

    以Gmail为例.点击屏幕的Capture按钮得到当前屏幕截图,点击Send按钮将之前的截图作为附件发送邮件. using UnityEngine; using System.Collections; ...

  4. Object类型知识总结,你掌握了多少?

      Object类型    ECMAScript中的对象其实就是一组数据和功能的集合.对象可以通过执行new操作符后跟要创建的对象类型的名称来创建.而创建Object类型的实例并为其添加属性和(或)方 ...

  5. C#并行编程--命令式数据并行(Parallel.Invoke)

    命令式数据并行   Visual C# 2010和.NETFramework4.0提供了很多令人激动的新特性,这些特性是为应对多核处理器和多处理器的复杂性设计的.然而,因为他们包括了完整的新的特性,开 ...

  6. IP设置

    由于家里的IP地址与公司的不一样,每次都要修改很麻烦,所以自己只做了一个IP修改bat. 打开记事本,把一下代码复制到记事本里,保存成bat就OK了.在23行设置自己的IP地址就可以了. @echo ...

  7. NuGet(Nuget Packages)

    Nuget是一个.NET平台下的开源的项目,它是Visual Studio的扩展.在使用Visual Studio开发基于.NET Framework的应用时,Nuget能把在项目中添加.移除和更新引 ...

  8. Centos下装eclipse测试Hadoop

    (一),安装eclipse 1,下载eclipse,点这里 2,将文件上传到Centos7,可以用WinSCP 3,解压并安装eclipse [root@Master opt]# tar zxvf ' ...

  9. JQuery插件之Animate.css和 jquery-aniview

    Animate.css 一款强大的预设css3动画库 简介 animate.css 是一个来自国外的 CSS3 动画库,它预设了抖动(shake).闪烁(flash).弹跳(bounce).翻转(fl ...

  10. Java命名默认规范

    学习java的时候,命名的大小写经常弄混,所以在此总结一下java命名规范 1.project(项目名) 说法不一,暂定小写,eg:arraytest 2.包名 小写,eg:package array ...