转自 http://www.zhizhihu.com/html/y2010/2292.html

Kernel Functions

Below is a list of some kernel functions available from the existing literature. As was the case with previous articles, every LaTeX notation for the formulas below are readily available from their alternate text html tag. I can not guarantee all of them are perfectly correct, thus use them at your own risk. Most of them have links to articles where they have been originally used or proposed.

1. Linear Kernel

The Linear kernel is the simplest kernel function. It is given by the inner product <x,y> plus an optional constant c. Kernel algorithms using a linear kernel are often equivalent to their non-kernel counterparts, i.e. KPCAwith linear kernel is the same as standard PCA.

2. Polynomial Kernel

The Polynomial kernel is a non-stationary kernel. Polynomial kernels are well suited for problems where all the training data is normalized.


Adjustable parameters are the slope alpha, the constant term c and the polynomial degree d.

3. Gaussian Kernel

The Gaussian kernel is an example of radial basis function kernel.

Alternatively, it could also be implemented using

The adjustable parameter sigma plays a major role in the performance of the kernel, and should be carefully tuned to the problem at hand. If overestimated, the exponential will behave almost linearly and the higher-dimensional projection will start to lose its non-linear power. In the other hand, if underestimated, the function will lack regularization and the decision boundary will be highly sensitive to noise in training data.

4. Exponential Kernel

The exponential kernel is closely related to the Gaussian kernel, with only the square of the norm left out. It is also a radial basis function kernel.

5. Laplacian Kernel

The Laplace Kernel is completely equivalent to the exponential kernel, except for being less sensitive for changes in the sigma parameter. Being equivalent, it is also a radial basis function kernel.

It is important to note that the observations made about the sigma parameter for the Gaussian kernel also apply to the Exponential and Laplacian kernels.

6. ANOVA Kernel

The ANOVA kernel is also a radial basis function kernel, just as the Gaussian and Laplacian kernels. It is said toperform well in multidimensional regression problems (Hofmann, 2008).

7. Hyperbolic Tangent (Sigmoid) Kernel

The Hyperbolic Tangent Kernel is also known as the Sigmoid Kernel and as the Multilayer Perceptron (MLP) kernel. The Sigmoid Kernel comes from the Neural Networks field, where the bipolar sigmoid function is often used as an activation function for artificial neurons.

It is interesting to note that a SVM model using a sigmoid kernel function is equivalent to a two-layer, perceptron neural network. This kernel was quite popular for support vector machines due to its origin from neural network theory. Also, despite being only conditionally positive definite, it has been found to perform well in practice.

There are two adjustable parameters in the sigmoid kernel, the slope alpha and the intercept constant c. A common value for alpha is 1/N, where N is the data dimension. A more detailed study on sigmoid kernels can be found in the works by Hsuan-Tien and Chih-Jen.

8. Rational Quadratic Kernel

The Rational Quadratic kernel is less computationally intensive than the Gaussian kernel and can be used as an alternative when using the Gaussian becomes too expensive.

9. Multiquadric Kernel

The Multiquadric kernel can be used in the same situations as the Rational Quadratic kernel. As is the case with the Sigmoid kernel, it is also an example of an non-positive definite kernel.

10. Inverse Multiquadric Kernel

The Inverse Multi Quadric kernel. As with the Gaussian kernel, it results in a kernel matrix with full rank (Micchelli, 1986) and thus forms a infinite dimension feature space.

11. Circular Kernel

The circular kernel comes from a statistics perspective. It is an example of an isotropic stationary kernel and is positive definite in R2.


12. Spherical Kernel

The spherical kernel is similar to the circular kernel, but is positive definite in R3.

13. Wave Kernel

The Wave kernel is also symmetric positive semi-definite (Huang, 2008).

14. Power Kernel

The Power kernel is also known as the (unrectified) triangular kernel. It is an example of scale-invariant kernel (Sahbi and Fleuret, 2004) and is also only conditionally positive definite.

15. Log Kernel

The Log kernel seems to be particularly interesting for images, but is only conditionally positive definite.

16. Spline Kernel

The Spline kernel is given as a piece-wise cubic polynomial, as derived in the works by Gunn (1998).

However, what it actually mean is:

With

17. B-Spline (Radial Basis Function) Kernel

The B-Spline kernel is defined on the interval [−1, 1]. It is given by the recursive formula:

In the work by Bart Hamers it is given by:

Alternatively, Bn can be computed using the explicit expression (Fomel, 2000):

Where x+ is defined as the truncated power function:

18. Bessel Kernel

The Bessel kernel is well known in the theory of function spaces of fractional smoothness. It is given by:

where J is the Bessel function of first kind. However, in the Kernlab for R documentation, the Bessel kernel is said to be:

19. Cauchy Kernel

The Cauchy kernel comes from the Cauchy distribution (Basak, 2008). It is a long-tailed kernel and can be used to give long-range influence and sensitivity over the high dimension space.

20. Chi-Square Kernel

The Chi-Square kernel comes from the Chi-Square distribution.

21. Histogram Intersection Kernel

The Histogram Intersection Kernel is also known as the Min Kernel and has been proven useful in image classification.

22. Generalized Histogram Intersection

The Generalized Histogram Intersection kernel is built based on the Histogram Intersection Kernelfor image classification but applies in a much larger variety of contexts (Boughorbel, 2005). It is given by:

23. Generalized T-Student Kernel

The Generalized T-Student Kernel has been proven to be a Mercel Kernel, thus having a positive semi-definite Kernel matrix (Boughorbel, 2004). It is given by:

24. Bayesian Kernel

The Bayesian kernel could be given as:

where

However, it really depends on the problem being modeled. For more information, please see the work by Alashwal, Deris and Othman, in which they used a SVM with Bayesian kernels in the prediction of protein-protein interactions.

25. Wavelet Kernel

The Wavelet kernel (Zhang et al, 2004) comes from Wavelet theory and is given as:

Where a and c are the wavelet dilation and translation coefficients, respectively (the form presented above is a simplification, please see the original paper for details). A translation-invariant version of this kernel can be given as:

Where in both h(x) denotes a mother wavelet function. In the paper by Li Zhang, Weida Zhou, and Licheng Jiao, the authors suggests a possible h(x) as:

Which they also prove as an admissible kernel function.

Kernel Function--核函数收集的更多相关文章

  1. [转]核函数K(kernel function)

    1 核函数K(kernel function)定义 核函数K(kernel function)就是指K(x, y) = <f(x), f(y)>,其中x和y是n维的输入值,f(·) 是从n ...

  2. Kernel Methods (2) Kernel function

    几个重要的问题 现在已经知道了kernel function的定义, 以及使用kernel后可以将非线性问题转换成一个线性问题. 在使用kernel 方法时, 如果稍微思考一下的话, 就会遇到以下几个 ...

  3. 核函数(kernel function)

    百度百科的解释: 常用核函数: 1.线性核(Linear Kernel): 2.多项式核(Polynomial Kernel): 3.径向基核函数(Radial Basis Function),也叫高 ...

  4. 统计学习方法:核函数(Kernel function)

    作者:桂. 时间:2017-04-26  12:17:42 链接:http://www.cnblogs.com/xingshansi/p/6767980.html 前言 之前分析的感知机.主成分分析( ...

  5. kernel function

    下面这张图位于第一.二象限内.我们关注红色的门,以及“北京四合院”这几个字下面的紫色的字母.我们把红色的门上的点看成是“+”数据,紫色字母上的点看成是“-”数据,它们的横.纵坐标是两个特征.显然,在这 ...

  6. Kernel Methods (1) 从简单的例子开始

    一个简单的分类问题, 如图左半部分所示. 很明显, 我们需要一个决策边界为椭圆形的非线性分类器. 我们可以利用原来的特征构造新的特征: \((x_1, x_2) \to (x_1^2, \sqrt 2 ...

  7. NLP&数据挖掘基础知识

    Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...

  8. class-支持向量机SVM全析笔记

    support vector machines,SVM是二类分类模型.定义在特征空间上间隔最大的线性分类器,由于包括核技巧实质上成为非线性分类器.学习策略是间隔最大化,可形式化为求解凸二次规划问题(c ...

  9. 复习支持向量机(SVM)没空看书时,掌握下面的知识就够了

    支持向量机(support vector machines, SVM)是一种二类分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器:支持向量机还包括核技巧,这使它成为实质上的非线性分类器. ...

随机推荐

  1. Java 第三章 选择结构1

    选择结构(一) 会使用基本的 if 选择结构 掌握逻辑运算符,掌握多重 if 选择结构 , 掌握嵌套 if 选择 结构 为什么需要 if 选择结构 例如: 如果张浩的 java 考试成绩大于 98分, ...

  2. java图形化编程

    转载 学习Java Swing图形化编程,我们首先要了解三个最基本的概念:顶层容器,控件,布局. 下面就来介绍一下这三个基本概念 1.顶层容器 什么是顶层容器?当我们使用Java进行图形编程的时候,图 ...

  3. H3C ipsec ike 协商配置

    1. 分几步设置 (1)定义ACL (2)创建 ipsec 安全建议 1.选择认证方式 ah 选择 ah头认证方式 不配置 ipsec不能建立成功 (3)创建IKE keychain 可以写多条key ...

  4. 7.1 Java中的堆和栈

    栈与堆都是Java用来在Ram中存放数据的地方.Java自动管理栈和堆,程序员不能直接地设置栈或堆. Java的堆是一个运行时数据区,类的对象从中分配空间.这些对象通过new.newarray.ane ...

  5. OGLplus 0.33.0 发布,OpenGL 的 C 封装库

    OGLplus 0.33.0 引入很多新的 OGLplus 和 OALplus 示例,更新了构建系统.CamMatrix::LookingAt 构造器.Texture::MaxLevel getter ...

  6. vim安装YouCompleteMe 插件

    要安装YouCompleteMe ,vim须支持python.看是否支持,可以在vim中:version 查看, 如果python前有+号,就是支持,减号就是不支持. 如果不支持,需要以编译安装方式重 ...

  7. 只有好的棋手才会走运-《打造Facebook》读后感

    王淮的<打造Facebook>一书不厚,花半天时间轻松读完.书中没有大段的说教,只有近乎流水的陈述.正如作者所说,打造Facebook这本书由巴克伯格来写再合适不过.可惜他至少在近几年内没 ...

  8. 第一个CSS变量:currentColor

    一.基本介绍 CSS变量正慢慢地从最初的草案到浏览器实现.但规范中有个已经存在多年的变量:currentColor.这个CSS特性具有良好的浏览器支持和一些实际的应用,本篇文章,我们来学习和了解它. ...

  9. Cocos2d-x3.6 Android编译问题

    在Cocod2d-x论坛上看到越来越多人吐槽新版本更新太快,改动太大,而且经常有BUG导致升级要折腾很久很久..但我就是喜欢折腾,喜欢升级到最新版本,看看有了哪些新功能,哪些改进.为此也折腾了不少,遇 ...

  10. 更新日志 - BugHD 与你的应用一起成长

    上周 BugHD Android客户端上线了,下载地址在此,欢迎大家体验并提出反馈.本周增加 BugHD 和 fir.im 的新功能,同时也做出一些体验优化. BugHD 新增功能 1.新增安装量.启 ...