Kernel Function--核函数收集
转自 http://www.zhizhihu.com/html/y2010/2292.html
Kernel Functions
Below is a list of some kernel functions available from the existing literature. As was the case with previous articles, every LaTeX notation for the formulas below are readily available from their alternate text html tag. I can not guarantee all of them are perfectly correct, thus use them at your own risk. Most of them have links to articles where they have been originally used or proposed.
1. Linear Kernel
The Linear kernel is the simplest kernel function. It is given by the inner product <x,y> plus an optional constant c. Kernel algorithms using a linear kernel are often equivalent to their non-kernel counterparts, i.e. KPCAwith linear kernel is the same as standard PCA.
2. Polynomial Kernel
The Polynomial kernel is a non-stationary kernel. Polynomial kernels are well suited for problems where all the training data is normalized.
Adjustable parameters are the slope alpha, the constant term c and the polynomial degree d.
3. Gaussian Kernel
The Gaussian kernel is an example of radial basis function kernel.
Alternatively, it could also be implemented using
The adjustable parameter sigma plays a major role in the performance of the kernel, and should be carefully tuned to the problem at hand. If overestimated, the exponential will behave almost linearly and the higher-dimensional projection will start to lose its non-linear power. In the other hand, if underestimated, the function will lack regularization and the decision boundary will be highly sensitive to noise in training data.
4. Exponential Kernel
The exponential kernel is closely related to the Gaussian kernel, with only the square of the norm left out. It is also a radial basis function kernel.
5. Laplacian Kernel
The Laplace Kernel is completely equivalent to the exponential kernel, except for being less sensitive for changes in the sigma parameter. Being equivalent, it is also a radial basis function kernel.
It is important to note that the observations made about the sigma parameter for the Gaussian kernel also apply to the Exponential and Laplacian kernels.
6. ANOVA Kernel
The ANOVA kernel is also a radial basis function kernel, just as the Gaussian and Laplacian kernels. It is said toperform well in multidimensional regression problems (Hofmann, 2008).
7. Hyperbolic Tangent (Sigmoid) Kernel
The Hyperbolic Tangent Kernel is also known as the Sigmoid Kernel and as the Multilayer Perceptron (MLP) kernel. The Sigmoid Kernel comes from the Neural Networks field, where the bipolar sigmoid function is often used as an activation function for artificial neurons.
It is interesting to note that a SVM model using a sigmoid kernel function is equivalent to a two-layer, perceptron neural network. This kernel was quite popular for support vector machines due to its origin from neural network theory. Also, despite being only conditionally positive definite, it has been found to perform well in practice.
There are two adjustable parameters in the sigmoid kernel, the slope alpha and the intercept constant c. A common value for alpha is 1/N, where N is the data dimension. A more detailed study on sigmoid kernels can be found in the works by Hsuan-Tien and Chih-Jen.
8. Rational Quadratic Kernel
The Rational Quadratic kernel is less computationally intensive than the Gaussian kernel and can be used as an alternative when using the Gaussian becomes too expensive.
9. Multiquadric Kernel
The Multiquadric kernel can be used in the same situations as the Rational Quadratic kernel. As is the case with the Sigmoid kernel, it is also an example of an non-positive definite kernel.
10. Inverse Multiquadric Kernel
The Inverse Multi Quadric kernel. As with the Gaussian kernel, it results in a kernel matrix with full rank (Micchelli, 1986) and thus forms a infinite dimension feature space.
11. Circular Kernel
The circular kernel comes from a statistics perspective. It is an example of an isotropic stationary kernel and is positive definite in R2.
12. Spherical Kernel
The spherical kernel is similar to the circular kernel, but is positive definite in R3.
13. Wave Kernel
The Wave kernel is also symmetric positive semi-definite (Huang, 2008).
14. Power Kernel
The Power kernel is also known as the (unrectified) triangular kernel. It is an example of scale-invariant kernel (Sahbi and Fleuret, 2004) and is also only conditionally positive definite.
15. Log Kernel
The Log kernel seems to be particularly interesting for images, but is only conditionally positive definite.
16. Spline Kernel
The Spline kernel is given as a piece-wise cubic polynomial, as derived in the works by Gunn (1998).
However, what it actually mean is:
With
17. B-Spline (Radial Basis Function) Kernel
The B-Spline kernel is defined on the interval [−1, 1]. It is given by the recursive formula:
In the work by Bart Hamers it is given by:
Alternatively, Bn can be computed using the explicit expression (Fomel, 2000):
Where x+ is defined as the truncated power function:
18. Bessel Kernel
The Bessel kernel is well known in the theory of function spaces of fractional smoothness. It is given by:
where J is the Bessel function of first kind. However, in the Kernlab for R documentation, the Bessel kernel is said to be:
19. Cauchy Kernel
The Cauchy kernel comes from the Cauchy distribution (Basak, 2008). It is a long-tailed kernel and can be used to give long-range influence and sensitivity over the high dimension space.
20. Chi-Square Kernel
The Chi-Square kernel comes from the Chi-Square distribution.
21. Histogram Intersection Kernel
The Histogram Intersection Kernel is also known as the Min Kernel and has been proven useful in image classification.
22. Generalized Histogram Intersection
The Generalized Histogram Intersection kernel is built based on the Histogram Intersection Kernelfor image classification but applies in a much larger variety of contexts (Boughorbel, 2005). It is given by:
23. Generalized T-Student Kernel
The Generalized T-Student Kernel has been proven to be a Mercel Kernel, thus having a positive semi-definite Kernel matrix (Boughorbel, 2004). It is given by:
24. Bayesian Kernel
The Bayesian kernel could be given as:
where
However, it really depends on the problem being modeled. For more information, please see the work by Alashwal, Deris and Othman, in which they used a SVM with Bayesian kernels in the prediction of protein-protein interactions.
25. Wavelet Kernel
The Wavelet kernel (Zhang et al, 2004) comes from Wavelet theory and is given as:
Where a and c are the wavelet dilation and translation coefficients, respectively (the form presented above is a simplification, please see the original paper for details). A translation-invariant version of this kernel can be given as:
Where in both h(x) denotes a mother wavelet function. In the paper by Li Zhang, Weida Zhou, and Licheng Jiao, the authors suggests a possible h(x) as:
Which they also prove as an admissible kernel function.
Kernel Function--核函数收集的更多相关文章
- [转]核函数K(kernel function)
1 核函数K(kernel function)定义 核函数K(kernel function)就是指K(x, y) = <f(x), f(y)>,其中x和y是n维的输入值,f(·) 是从n ...
- Kernel Methods (2) Kernel function
几个重要的问题 现在已经知道了kernel function的定义, 以及使用kernel后可以将非线性问题转换成一个线性问题. 在使用kernel 方法时, 如果稍微思考一下的话, 就会遇到以下几个 ...
- 核函数(kernel function)
百度百科的解释: 常用核函数: 1.线性核(Linear Kernel): 2.多项式核(Polynomial Kernel): 3.径向基核函数(Radial Basis Function),也叫高 ...
- 统计学习方法:核函数(Kernel function)
作者:桂. 时间:2017-04-26 12:17:42 链接:http://www.cnblogs.com/xingshansi/p/6767980.html 前言 之前分析的感知机.主成分分析( ...
- kernel function
下面这张图位于第一.二象限内.我们关注红色的门,以及“北京四合院”这几个字下面的紫色的字母.我们把红色的门上的点看成是“+”数据,紫色字母上的点看成是“-”数据,它们的横.纵坐标是两个特征.显然,在这 ...
- Kernel Methods (1) 从简单的例子开始
一个简单的分类问题, 如图左半部分所示. 很明显, 我们需要一个决策边界为椭圆形的非线性分类器. 我们可以利用原来的特征构造新的特征: \((x_1, x_2) \to (x_1^2, \sqrt 2 ...
- NLP&数据挖掘基础知识
Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...
- class-支持向量机SVM全析笔记
support vector machines,SVM是二类分类模型.定义在特征空间上间隔最大的线性分类器,由于包括核技巧实质上成为非线性分类器.学习策略是间隔最大化,可形式化为求解凸二次规划问题(c ...
- 复习支持向量机(SVM)没空看书时,掌握下面的知识就够了
支持向量机(support vector machines, SVM)是一种二类分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器:支持向量机还包括核技巧,这使它成为实质上的非线性分类器. ...
随机推荐
- 编程语言java-并发(锁)
文章转载自http://www.importnew.com/22078.html 悲观锁和乐观锁 我们都知道,CPU是时分复用的,就是CPU把时间片,分配给不同的thread/process轮流执行, ...
- Web大文件上传控件-bug修复-Xproer.HttpUploader6
1.修复上传文件夹时,文件夹大小可能不正确的问题.这个问题是由于以MD5模式上传时没有更新文件夹总大小导致. 更新fd_complete.aspx 更新DBFile.cs-fd_complet ...
- 第五天:内置对象(7.Javascript内置对象)
1)中所术是内置对象,2)中为自定义对象 代码说明如下 2.1.1 定义并创建对象实例方式1,代码如下: <!DOCTYPE html><html lang="en&quo ...
- poj 1035 Spell checker
Spell checker Time Limit: 2000 MS Memory Limit: 65536 KB 64-bit integer IO format: %I64d , %I64u J ...
- sublime Text3 插件编写教程_第一课
今天给大家分享一下编写一个Sublime Text3 插件的流程以及使用插件解决的一个实际问题. 一.开发插件的前提条件 开发sublime插件用到的是Python语言,因此必须懂Python语言的基 ...
- JqueryEasyUI浅谈---视频教程公布
http://pan.baidu.com/s/1pJqGXez 前两天我在博客园发了一个关于JqueryEasyUI浅谈本地化应用的博客,我简单的介绍了JqueryEasyUI的应用,今天我录制了了一 ...
- WP8.1:关于屏幕尺寸和分辨率的那些事儿
目前市面上的Windows Phone设备越来越多,尺寸和分辨率也越来越多,特别是WP8.1时代的到来.做过wp开发的人都知道应用适配其实较安卓要简单太多了,其中有一个重要原因,就是微软号称所有WP设 ...
- ASP.NET MVC 4源码分析之如何定位控制器
利用少有的空余时间,详细的浏览了下ASP.NET MVC 4的源代码.照着之前的步伐继续前进(虽然博客园已经存在很多大牛对MVC源码分析的博客,但是从个人出发,还是希望自己能够摸索出这些).首先有一个 ...
- [翻译]Bob大叔:反思极限编程
译者注: Bob大叔14年后再次谈论极限编程.极限编程经历了14年的风风雨雨后,Bob大叔将会给它怎么样的定义那? 在我手中拿着的一本白皮薄书,在14年前彻底的改变了软件世界.这本书的标题是解析极限编 ...
- [BTS] WCF-OracleDB
When I insert some data to Oracle, BizTalk WCF-OracleDB throw this error. A message sent to adapter ...