代码示例一:

#include<opencv2/opencv.hpp>
using namespace cv;

int main(){
    Mat src = imread();
    imshow("原始图", src);

    //进行Harris角点检测找出角点
    Mat cornerStrength;
    cornerHarris(src, cornerStrength, , , 0.01);

    //对灰度图进行阈值操作,得到二值图并显示
    Mat harrisCorner;
    threshold(cornerStrength, harrisCorner, , THRESH_BINARY);
    imshow("二值效果图",harrisCorner);

    waitKey();
    ;
}

效果:

代码示例二:

#include<opencv2/opencv.hpp>
using namespace cv;

#define WINDOW_NAME1 "窗口1"
#define WINDOW_NAME2 "窗口2"

Mat src,srcClone,gray;
;
;

//函数声明
void onCornerHarris(int, void*);//回调函数

int main(){
    src = imread();
    imshow("原始图", src);
    srcClone = src.clone();
    cvtColor(srcClone, gray, COLOR_BGR2GRAY);

    //创建窗口和滚动条
    namedWindow(WINDOW_NAME1, WINDOW_AUTOSIZE);
    createTrackbar("阈值:", WINDOW_NAME1, &thresh, max_thresh, onCornerHarris);
    //调用一次回调函数进行初始化
    onCornerHarris(, );

    waitKey();
    ;
}

void onCornerHarris(int, void*){
    Mat dstImage;//目标图
    Mat normImage;//归一化后的图
    Mat scaledImage;//线性变换后的8位无符号整形图

    //初始化
    dstImage = Mat::zeros(src.size(), CV_32FC1);
    srcClone = src.clone();

    //进行角点检测
    cornerHarris(gray, dstImage, , , 0.04, BORDER_DEFAULT);
    //归一化与转换
    normalize(dstImage, normImage, , , NORM_MINMAX, CV_32FC1, Mat());
    convertScaleAbs(normImage, scaledImage);

    //绘制:将检测到的,符合阈值条件的角点绘制出来
    ; j < normImage.rows; j++){
        ; i < normImage.cols; i++){
            ){
                circle(srcClone, Point(i, j), , Scalar(, , ), , , );
                circle(scaledImage, Point(i, j), , Scalar(, , ), , , );
            }
        }
    }

    imshow(WINDOW_NAME1, srcClone);
    imshow(WINDOW_NAME2, scaledImage);
}

效果:

代码示例三:

#include<opencv2/opencv.hpp>
using namespace cv;
#include<vector>
using namespace std;
class HarrisDetector{
private:
    //表示角点强度的32位浮点图像
    Mat cornerStrength;
    //阈值化后的32位浮点图像
    Mat cornerTh;
    //局部极大值图像(内部)
    Mat localMax;
    //导数平滑的相邻像素的尺寸
    int neighbourhood;
    //梯度计算的孔径大小
    int aperture;
    //Harris参数
    double k;
    //harris计算的最大强度
    double maxStrength;
    //计算得到的阈值(内部)
    double threshold;
    //非极大值抑制的相邻像素的尺寸
    int nonMaxSize;
    //非极大值抑制的核
    Mat kernel;

public:
    HarrisDetector() :neighbourhood(), aperture(),
        k(0.01), maxStrength(0.0),
        threshold(){
        //创建非极大值抑制的核

    }

    void detect(const Mat& image){
        //harris计算
        cornerHarris(image, cornerStrength, neighbourhood, aperture, k);
        //内部阈值计算
        double minStrength;//未使用
        minMaxLoc(cornerStrength, &minStrength, &maxStrength);
        //局部极大值检测
        Mat dilated;//临时图像
        dilate(cornerStrength, dilated, Mat());
        compare(cornerStrength, dilated, localMax, CMP_EQ);
    }

    Mat getCornerMap(double qualityLevel){
        Mat cornerMap;
        //对角点图像进行阈值化
        this->threshold = qualityLevel*maxStrength;
        cv::threshold(cornerStrength, cornerTh, threshold, , THRESH_BINARY);
        //转换为8位图像
        cornerTh.convertTo(cornerMap,CV_8U);
        //非极大值抑制
        bitwise_and(cornerMap, localMax, cornerMap);
        return cornerMap;
    }

    void getCorners(vector<cv::Point>& points,double qualityLevel){
        //得到角点图
        cv::Mat cornerMap = getCornerMap(qualityLevel);
        getCorners(points, cornerMap);
    }

    void getCorners(vector<cv::Point>& points, const Mat& cornerMap){
        //遍历像素得到所有特征
        ; y < cornerMap.rows; y++){
            const uchar* rowPtr = cornerMap.ptr <uchar>(y);
            ; x < cornerMap.cols; x++){
                //如果是特征点
                if (rowPtr[x]){
                    points.push_back(cv::Point(x, y));
                }
            }
        }
    }

    //在特征点的位置绘制圆
    ,,), , ){
        vector<cv::Point>::const_iterator it = points.begin();
        while (it != points.end()){
            cv::circle(image, *it, radius, color, thickness);
            ++it;
        }
    }
};

int main(){
    Mat src = imread();
    //HarrisDetector类使用方式
    HarrisDetector harris;
    harris.detect(src);
    std::vector<cv::Point> pts;
    harris.getCorners(pts, 0.1);
    harris.drawOnImage(src, pts);
    imshow("result", src);
    waitKey();
}

效果:

Harris角点检测的更多相关文章

  1. Harris角点检测算法优化

    Harris角点检测算法优化 一.综述 用 Harris 算法进行检测,有三点不足:(1 )该算法不具有尺度不变性:(2 )该算法提取的角点是像素级的:(3 )该算法检测时间不是很令人满意. 基于以上 ...

  2. Harris 角点检测

    一 .Motivation 对于做图像处理的人来说,Harris角点检测肯定听过,1988年发表的文章"A combined corner and edge detector"描述 ...

  3. Harris角点检测算原理

    主要参考了:http://blog.csdn.net/yudingjun0611/article/details/7991601  Harris角点检测算子 本文将该文拷贝了过来,并做了一些数学方面的 ...

  4. Harris角点检测原理分析

    看到一篇从数学意义上讲解Harris角点检测很透彻的文章,转载自:http://blog.csdn.net/newthinker_wei/article/details/45603583 主要参考了: ...

  5. cv2.cornerHarris()详解 python+OpenCV 中的 Harris 角点检测

    参考文献----------OpenCV-Python-Toturial-中文版.pdf 参考博客----------http://www.bubuko.com/infodetail-2498014. ...

  6. Opencv学习笔记------Harris角点检测

    image算法测试iteratoralgorithmfeatures 原创文章,转载请注明出处:http://blog.csdn.net/crzy_sparrow/article/details/73 ...

  7. harris角点检测的简要总结

    目录 1. 概述相关 2. 原理详解 1) 算法思想 2) 数学模型 3) 优化推导 3. 具体实现 1) 详细步骤 2) 最终实现 4. 参考文献 1. 概述相关 harris角点检测是一种特征提取 ...

  8. OpenCV-Python:Harris角点检测与Shi-Tomasi角点检测

    一.Harris角点检测 原理: 角点特性:向任何方向移动变换都很大. Chris_Harris 和 Mike_Stephens 早在 1988 年的文章<A CombinedCorner an ...

  9. 第十一节、Harris角点检测原理(附源码)

    OpenCV可以检测图像的主要特征,然后提取这些特征.使其成为图像描述符,这类似于人的眼睛和大脑.这些图像特征可作为图像搜索的数据库.此外,人们可以利用这些关键点将图像拼接起来,组成一个更大的图像,比 ...

随机推荐

  1. 基于Open vSwitch搭建虚拟路由器

    As part of my work in OpenDaylight, we are looking at creating a router using Open vSwitch... Why? W ...

  2. Windows性能查看器:系统的性能信息(I/O,IIS最大连接数,Sql) ,以及解决 asp.net IIS 一二百多用户并发

    在测试过程中,我们经常需要知道“系统的资源利用情况”来监测我们的测试执行情况,来查看测试环境是否有效,测试结果是否可信,或者是在无人值守时保存结果,等我们值班时再来分析. 1.在Windows环境下, ...

  3. WCF JSON DATETIME JSON.NET (Newtonsoft.Json.dll)

    [DataMember] public DateTime? myTime { get; set; } var timeFormat = new JsonSerializerSettings() { D ...

  4. yii2安装

    https://github.com/settings/tokens  设置token 在安装的时候 要复制进去 复制到安装命令中去

  5. ERROR 1130 (HY000):Host'localhost'解决方法

    http://www.2cto.com/database/201211/169504.html ERROR 1130 (HY000):Host'localhost'解决方法   ERROR 1130 ...

  6. java中向JTextArea中添加滚动条(垂直的和水平的)

    这次在研究java的swing类时,在做一个实例时,发现了JTextArea中添加滚动条的问题,经过网上查找资料和自己测试发现有以下用法: 1.首先应该把JTextArea添加到一个JScrollPa ...

  7. java readLine()

    原文 虽然写IO方面的程序不多,但BufferedReader/BufferedInputStream倒是用过好几次的,原因是: 它有一个很特别的方法:readLine(),使用起来特别方便,每次读回 ...

  8. [HTML] CSS3 边框

    CSS3 边框 用CSS3,你可以创建圆角边框,添加阴影框,并作为边界的形象而不使用设计程序,如Photoshop. 在本章中,您将了解以下的边框属性: border-radius box-shado ...

  9. [CF225C] Barcode (简单DAG上dp)

    题目链接:http://codeforces.com/problemset/problem/225/C 题目大意:给你一个矩阵,矩阵中只有#和.两种符号.现在我们希望能够得到一个新的矩阵,新的矩阵满足 ...

  10. php路径目录解析函数dirname basename pathinfo区别及实例

    php获取路径.目录或文件名称,我们经常会使用到dirname().basename().pathinfo()这三个函数,本文章向大家详细介绍这三个函数的区别以及使用实例,需要的朋友可以参考一下. d ...