hiho一下 第九十五周 数论四·扩展欧几里德
题目 : 数论四·扩展欧几里德
描述
小Hi和小Ho周末在公园溜达。公园有一堆围成环形的石板,小Hi和小Ho分别站在不同的石板上。已知石板总共有m块,编号为 0..m-1,小Hi一开始站在s1号石板上,小Ho一开始站在s2号石板上。
小Hi:小Ho,你说我们俩如果从现在开始按照固定的间隔数同时同向移动,我们会不会在某个时间点站在同一块石板上呢?
小Ho:我觉得可能吧,你每次移动v1块,我移动v2块,我们看能不能遇上好了。
小Hi:好啊,那我们试试呗。
一个小时过去了,然而小Hi和小Ho还是没有一次站在同一块石板上。
小Ho:不行了,这样走下去不知道什么时候才汇合。小Hi,你有什么办法算算具体要多久才能汇合么?
小Hi:让我想想啊。。
提示:扩展欧几里德
输入
第1行:每行5个整数s1,s2,v1,v2,m,0≤v1,v2≤m≤1,000,000,000。0≤s1,s2<m
中间过程可能很大,最好使用64位整型
输出
第1行:每行1个整数,表示解,若该组数据无解则输出-1
- 样例输入
-
0 1 1 2 6
- 样例输出
-
5
解法:
先确定5个参数之间关系,建设存在时间t和圈数k满足:
s1+v1*t=s2+v2*t-k*m (v1<v2)
(v1-v2)*t+k*m=(s2-s1)
—————— —— ——————
A B C
看成Ax+By=C,求通解(x,y)使等式成立。使用扩展欧几里得算法。
上式成立的条件是,方程有解,既c为A,B最大公约数的整数倍。
欧几里得算法:是用来求解最大公约数的一种算法,大概思路是gcd(a, b) = gcd(b , a%b),辗转相除法,这样做的好处是算法时间复杂度比枚举大大降低。logn级别。
a%b=0则,a、b的最大公约数为b。
a%b!=0,则gcd(a, b) = gcd(b , a%b)。
通过递归,降低数据的规模,得到一个解。
而扩展欧几里得算法,在欧几里得算法的基础上,再求一组(x,y),ABC均为gcd(A,B)的整数倍,ABC同时缩小gcd(A,B)。
得到A'x+B'y=C',gcd(A',B')=1,A',B'互质(A,B的最大公约数为1)
取2组解
A * x1 + B * y1 = gcd(A, B)
B * x2 + (A % B) * y2 = gcd(B, A % B) 化简为
x1 = y2, y1 = (x2 - ky2)
递归求解(x,y)
终止条件为x=0,y=1;
#include <iostream>
typedef long long LL;
using namespace std; LL gcd(LL a,LL b){
if(b==)
return a;
return gcd(b,a%b);
} LL extend_gcd(LL a, LL b,LL &x,LL &y){
if(a%b!=){
x=;
y=;
return a;
} LL ans=extend_gcd(b,a%b,x,y);
LL temp=x;
x=y;
y=temp-(a/b)*y;
return ans; } int main(){
LL s1,s2,v1,v2,m;
cin>>s1>>s2>>v1>>v2>>m; LL A,B,C,D,x,y; A = v1 - v2;
B = m;
C = s2 - s1; if (A < )
A = A + m ;
D = gcd(A, B); if (C % D)
cout<<-<<endl; A = A / D;
B = B / D;
C = C / D; x = extend_gcd(A, B,x,y);
x = (x * C) % B;
while (x < ){
x = x + B;
}
cout<<x<<endl; }
自己的机器上跑没问题,提交hiho总是WA,伤不起。有大神可以指点一二就好了。
hiho一下 第九十五周 数论四·扩展欧几里德的更多相关文章
- hiho一下 第九十六周 数论五·欧拉函数
题目1 : 数论五·欧拉函数 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho有时候会用密码写信来互相联系,他们用了一个很大的数当做密钥.小Hi和小Ho约定 ...
- hiho一下 第九十八周 搜索一·24点
题目1 : 搜索一·24点 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 周末,小Hi和小Ho都在家待着. 在收拾完房间时,小Ho偶然发现了一副扑克,于是两人考虑用这副 ...
- hihocode 第九十二周 数论一·Miller-Rabin质数测试
题目链接 检测n是否为素数,数据范围为2 <= n <= 10^18; 思路:Miller_Rabin素数检测模板题,原理:在Fetmat定理的基础之上,再利用二次探测定理: 对于任意的正 ...
- 【hihocoder 1297】数论四·扩展欧几里德
[题目链接]:http://hihocoder.com/problemset/problem/1297 [题意] [题解] 问题可以转化为数学问题 即(s1+v1*t)%m == (s2+v2*t)% ...
- 第十四,十五周PTA作业
1.第十四周part1 7-3 #include<stdio.h> int main() { int n; scanf("%d",&n); int a[n]; ...
- 201771010134杨其菊《面向对象程序设计(java)》第十五周学习
第十五周学习总结 第一部分:理论知识 JAR文件: 应用程序首选项存储: Java Web Start JAR文件: 1.Java程序的打包:程序编译完成后,程序员将.class文件压缩打包为.jar ...
- 201871010111-刘佳华《面向对象程序设计(java)》第十五周学习总结
201871010111-刘佳华<面向对象程序设计(java)>第十五周学习总结 实验十三 Swing图形界面组件(二) 实验时间 2019-12-6 第一部分:理论知识总结 5> ...
- 201871010104-陈园园 《面向对象程序设计(java)》第十五周学习总结
201871010104-陈园园 <面向对象程序设计(java)>第十五周学习总结 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ ...
- 201871010105-曹玉中《面向对象程序设计(java)》第十五周学习总结
201871010105-曹玉中<面向对象程序设计(java)>第十五周学习总结 项目 内容 这个作业属于哪个过程 https://www.cnblogs.com/nwnu-daizh/ ...
随机推荐
- DOM系列---进阶篇
内容提纲: 1.DOM类型 2.DOM扩展 3.DOM操作内容 一.DOM类型 DOM基础篇中,我们了解了DOM的节点并且了解怎样查询和操作节点,而本身这些不同的节点,又有着不同的类型. DOM类 ...
- 页面无法访问 css文件加载问题
1.青奥项目的web配置: 后缀为.html和.vm的请求会被控制器拦截. 控制器没设置目标资源,所以无法访问到资源! 2.文件不能放在vm文件夹下,因为设置了视图解析,vm文件夹下的文件只有后缀为 ...
- 【转】高斯消元模板 by kuangbin
写的很好,注释很详细,很全面. 原blog地址:http://www.cnblogs.com/kuangbin/archive/2012/09/01/2667044.html #include< ...
- html5_canvas-记忆力卡片游戏
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 安装Eclipse插件
安装Eclipse插件 从eclipse 3.6开始,eclipse有一个marketplace,这个类似现在手机的app store一样,可以在其中检索相关插件,直接安装,打开help--> ...
- Hibernate-一级缓存session
hibernate提供的一级缓存 hibernate是一个线程对应一个session,一个线程可以看成一个用户.也就是说session级缓存(一级缓存)只能给一个线程用,别的线程用不了,一级缓存就是和 ...
- mac os x常用快捷键及用法
最近在研究mac os x系统,开始入手,很不习惯,和windows差别很大,毕竟unix内核.使用中总结了一些使用快捷键(默认),持续更新,欢迎大家补充.1.撤销:command+z 保存:comm ...
- list 和 str
list 和 str 两种类型数据,有不少相似的地方,也有很大的区别.本讲对她们做个简要比较,同时也是对前面有关两者的知识复习一下,所谓“温故而知新”. 相同点 都属于序列类型的数据 所谓序列类型的数 ...
- Codeforces 593B Anton and Lines
LINK time limit per test 1 second memory limit per test 256 megabytes input standard input output st ...
- windows上使用image库
首先要安装这个库,可以使用pip安装,那么我们要首先安装pip 去https://bootstrap.pypa.io/get-pip.py下载get-pip.py,然后运行python get-pip ...