先考虑边的代价,容易发现每一条边都需要走两次,也就是2*边权
再考虑点的代价,由于上面的结论,那么就是度数*点权
然后就可以构造新的边权为2*原边权+连接点的点权,然后求最小生成树即可
注意根还有一个点权,所以再加上根(也就是最小点)的点权即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 10005
4 struct ji{
5 int x,y,z;
6 }e[N*10];
7 int n,m,ans,a[N],f[N];
8 bool cmp(ji x,ji y){
9 return x.z<y.z;
10 }
11 int find(int k){
12 if (k==f[k])return k;
13 return f[k]=find(f[k]);
14 }
15 int main(){
16 scanf("%d%d",&n,&m);
17 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
18 ans=a[1];
19 for(int i=2;i<=n;i++)ans=min(ans,a[i]);
20 for(int i=1;i<=m;i++){
21 scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].z);
22 e[i].z=2*e[i].z+a[e[i].x]+a[e[i].y];
23 }
24 sort(e+1,e+m+1,cmp);
25 for(int i=1;i<=n;i++)f[i]=i;
26 for(int i=1;i<=m;i++)
27 if (find(e[i].x)!=find(e[i].y)){
28 f[find(e[i].x)]=find(e[i].y);
29 ans+=e[i].z;
30 }
31 printf("%d",ans);
32 }

[bzoj1232]安慰奶牛的更多相关文章

  1. [bzoj1232][Usaco2008Nov]安慰奶牛cheer_Kruskal

    安慰奶牛 cheer bzoj-1232 Usaco-2008 Nov 题目大意:给定一个n个点,m条边的无向图,点有点权,边有边权.FJ从一个点出发,每经过一个点就加上该点点权,每经历一条边就加上该 ...

  2. BZOJ1232: [Usaco2008Nov]安慰奶牛cheer

    1232: [Usaco2008Nov]安慰奶牛cheer Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 578  Solved: 403[Submi ...

  3. 1232: [Usaco2008Nov]安慰奶牛cheer

    1232: [Usaco2008Nov]安慰奶牛cheer Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 612  Solved: 431[Submi ...

  4. 算法笔记_067:蓝桥杯练习 算法训练 安慰奶牛(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 Farmer John变得非常懒,他不想再继续维护供奶牛之间供通行的道路.道路被用来连接N个牧场,牧场被连续地编号为1到N.每一个牧场都是 ...

  5. 【bzoj1232】[Usaco2008Nov]安慰奶牛cheer(最小生成树)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1232 这道题要保留的道路肯定是原图的一棵生成树,因为要保留n-1条边,且使删边后的图连 ...

  6. 【最小生成树】Bzoj1232 [Usaco2008Nov]安慰奶牛cheer

    Description Farmer John变得非常懒, 他不想再继续维护供奶牛之间供通行的道路. 道路被用来连接N (5 <= N <= 10,000)个牧场, 牧场被连续地编号为1. ...

  7. 【bzoj1232】[Usaco2008Nov]安慰奶牛cheer

    问题描述 Farmer John变得非常懒,他不想再继续维护供奶牛之间供通行的道路.道路被用来连接N个牧场,牧场被连续地编号为1到N.每一个牧场都是一个奶牛的家.FJ计划除去P条道路中尽可能多的道路, ...

  8. [BZOJ1232][[Usaco2008Nov]安慰奶牛cheer(MST)

    题目:http://hzwer.com/2493.html 分析:对于每条边,贡献的价值是这条边的边权加上这条边连接的两点的权值,所以可以把每条边的边权加上两顶点的点权作为新的边权,然后跑个最小生成树 ...

  9. BZOJ1232: [Usaco2008Nov]安慰奶牛cheer(最小生成树)

    题意:给一个图 需要找到一个子图使得所有点都连通 然后再选择一个点做为起点 走到每个点并回到起点 每条边,每个点被经过一次就要花费一次边权.点权 题解:肯定是找一颗最小生成树嘛 然后惊奇的发现 任意选 ...

随机推荐

  1. IPtable防火墙概念介绍

    1.iptables安全优化 1.不配外网,做代理转发或者防火墙映射 2.并发过大,不建议开启防火墙 2.防火墙的工作流程: 按照配置规则的顺序自上而下,从前到后进行过滤 如果匹配上新规则,表明是阻止 ...

  2. Jekins 插件Extended Choice Parameter显示Json Parameter Type遇到的问题

    在jenkins中使用Extended Choice Parameter插件用来显示自定义的多选项,尝试通过groovy script来显示,正常,但查看它的例子,发现它例子中多选是通过类型 Json ...

  3. 题解 SP6779 【GSS7 - Can you answer these queries VII】

    题目传送门 题目大意 给出一个\(n\)个点的树,每个点有权值.有\(m\)次操作,每次要么查询一条链上的最大子段和,要么把一条链的权值都修改为一个常数. \(n,m\le 10^5\) 思路 如果是 ...

  4. C#开发BIMFACE系列48 Nginx部署并加载离线数据包

    BIMFACE二次开发系列目录     [已更新最新开发文章,点击查看详细] 在前一篇博客<C#开发BIMFACE系列47 IIS部署并加载离线数据包>中详细介绍了IIS部署并访问的完整步 ...

  5. .Net 5下的单文件部署

    由于.net程序没有静态链接,一直缺乏单文件部署这种干净的发布方案.对客户端程序发布并不是很友好.在之前的.net framework下,有ILMerge合并程序集,以及LibZ的嵌入资源文件等第三方 ...

  6. 2021.10.15考试总结[NOIP模拟77]

    \(n=40\)考虑\(meet \;in \;the \;middle\) 某个元素有关的量只有一个时考虑转化为树上问题 对暴力有自信,相信数据有梯度 没了 UPD:写了个略说人话的. T1 最大或 ...

  7. Python中根据时间自动创建文件夹

    导语 ​ 电脑桌面文件太多查找起来比较花费时间,并且凌乱的电脑桌面也会影响工作心情,于是利用python根据时间自动建立当日文件夹,这样就可以把桌面上文件按时间进行存放. 代码实现 # _*_codi ...

  8. python 修饰器(decorator)

    转载:Python之修饰器 - 知乎 (zhihu.com) 什么是修饰器,为什么叫修饰器 修饰器英文是Decorator, 我们假设这样一种场景:古老的代码中有几个很是复杂的函数F1.F2.F3.. ...

  9. (转)linux下execl和system函数

    linux下,system函数和execl函数都是用于执行一条系统命令.今天仔细看了system函数的实现,想找出和execl函数的差别. 这里先进行一些背景知识补充: fork(创建一个新的进程): ...

  10. minimum-depth-of-binary-tree leetcode C++

    Given a binary tree, find its minimum depth.The minimum depth is the number of nodes along the short ...