######

https://learn-linux.readthedocs.io/zh_CN/latest/administration/kernel/rlimit.html

############

资源限制

资源限制 ( resource limit 或 rlimit ),是 Linux 内核控制 用户 或 进程 资源占用的机制。

rlimit 可控制的系统资源包括: 内存 、 文件 、  、 CPU调度 、 进程数 等。 优秀系统管理员设置合适的 rlimit 值,避免某个用户或某个进程占用过多系统资源而拖垮系统。

本文介绍设置 rlimit 的来龙去脉,具体 rlimit 值属于 系统调优 范畴,暂不全面涉及。

ulimit命令

ulimit 是一个 Shell 内置命令,由于查看、调整当前 Shell 进程的 rlimit 值。 以 bash 为例,查看所有 rlimit 值:

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 3709
max locked memory (kbytes, -l) 16384
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 3709
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

注解

资源项详细介绍请参考文章末尾处附录的表格。

也可以查看某项资源的限制,以进程打开 文件描述符 数( RLIMIT_NOFILE )为例:

$ ulimit -n
1024

由此可见,当前 Shell 进程最多只能打开 1024 个 文件描述符 ,由该 Shell 启动的程序也是如此。 接着实现一个简单的程序,不断创建 套接字 ( socket ),以验证这一点:

$ python detect-max-fd.py
error no: 24
error string: Too many open files
fd range: [3, 1023]

显然,程序无法无限地创建 套接字 。 当 文件描述符 达到 rlimit 限制时, 相关 系统调用将失败, 错误码为 EMFILE ,即 Too many open files 。 成功打开的套接字文件描述符范围从 3 到 1023 ,与 1024 的上限相吻合。

注解

进程前三个文件描述符 0 、 1 、 2 分别是 stdin 、 stdout 以及 stderr 。

当然了,可以通过 ulimit 调整 文件描述符 上限:

$ ulimit -Sn 512

注解

-S 选项指定 软限制 ,资源软硬限制之别请见下一小节。

这时,进程能打开的 文件描述符 变少了:

$ python detect-max-fd.py
error no: 24
error string: Too many open files
fd range: [3, 511]

注解

detect-max-fd.py 源码以及原理剖析请查看文章附录,位于末尾处。

软硬之分

资源限制有软硬之分, 软限制 ( soft )和 硬限制 ( hard )。

软限制 是一般意义的资源限制, 直接作用于用户或者进程 。 ulimit 默认返回软限制:

$ ulimit -n
1024

也可通过 -S 选项显式指定返回 软限制 :

$ ulimit -Sn
1024

由上一小节,我们知道用户可以将软限制调低或调高。 如果普通用户可以无限制调高, rlimit 将失去限制用户的意义。 为此,内核引入了 硬限制 ,规定了软限制调整的上限。

ulimit 查看 硬限制 需要指定 -H 选项:

$ ulimit -Hn
1048576

调整 软限制 时,不能超出 硬限制 ,否则报错:

$ ulimit -Sn 10485760
-bash: ulimit: open files: cannot modify limit: Invalid argument

同样,可以将 硬限制 调低:

$ ulimit -n 1024

注解

设置 rlimit 限制时,未指定软硬,则同时设置。

一旦调低 硬限制 ,便没有后悔药,无法再调高了(除非出动 root 用户):

$ ulimit -Hn 1048576
-bash: ulimit: open files: cannot modify limit: Operation not permitted

因此,软硬限制之别可总结为以下几点:

  1. 软限制 直接起作用;
  2. 软限制 不能超出 硬限制 ;
  3. 硬限制 只能调低;

配置文件

通过配置文件设置 rlimit 值,可永久生效,也可突破 ulimit 不能调高 硬限制 的局限。 配置文件 limits.conf 位于 /etc/security/limits.conf ,格式如下:

root    soft    nofile  1000000
root hard nofile 1000000 * soft nofile 1000000
* hard nofile 1000000

每个配置行由 4 个字段组成,分别是:

  •  ( domain )
  • 类型 ( type )
  • 资源项 ( item )
  •  ( value )

其中,  可以是用户或者用户组(以 @ 开头,例如 @admin ), * 则表示任意用户; 类型 分为两种,分别对应 软限制 ( soft )和 硬限制 ( hard ); 资源项 列表见附录。

配置编辑完毕后,重新登录即可生效,无需重启。

注解

limits.conf 是 pam_limits.so 的配置文件, 而 pam_limits.so 是 Linux 插入式认证模块 ( Pluggable Authentication Modules 简称 PAM )的子模块。

根据 PAM 机制,应用程序启动时,按 /etc/pam.d 配置加载 pam_xxxx.so 模块。 /etc/pam.d 下包含了 login 、 sshd 、 su 、 sudo 等程序的 PAM 配置文件, 因此用户重新登录时,将调用 pam_limits.so 加载 limits.conf 配置文件。

附录

rlimit资源项

表格-1 资源项
项目 ulimit选项 含义
as -v 地址空间 (虚拟内存空间)大小限制
chroot   chroot 目录
core -c 核心转储文件 大小限制
cpu -t CPU执行时间 限制
data -d 进程数据段 大小限制
fsize -f 文件大小 限制
locks -x 文件锁数量 限制
memlock -l 锁定内存 ( locked-in-memory )地址空间大小限制
maxlogins   用户登录数 限制
maxsyslogins   系统登录数 限制
msgqueue -q 消息队列内存 限制
nice -e nice值上限
nofile -n 文件描述符 数量限制
nproc -u 进程数量 限制
priority    
rss -m 常驻内存 ( resident set )大小限制
rtprio -r 实时调度优先级
rttime    
sigpending -i 排队信号 ( pending signals )数量限制
stack -s 进程栈大小 限制

detect-max-fd.py源码

这是一个 Python 程序,循环创建套接字,促使进程打开文件描述符达到上限:

 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from socket import (
socket,
AF_INET,
SOCK_STREAM,
) def main():
sockets = [] while True:
try:
s = socket(AF_INET, SOCK_STREAM)
sockets.append(s)
except OSError as exc:
print('error no: %s' % (exc.errno,))
print('error string: %s' % (exc.strerror,)) print('fd range: [%d, %d]' % (
sockets[0].fileno(),
sockets[-1].fileno(),
)) break if __name__ == '__main__':
main()

第 8 行,用一个列表来存放已创建的套接字( Python 套接字对象); 第 12-13 行,循环创建套接字并追加到列表中,直到 OSError 异常(系统调用出错); 第 15-16 行,打印错误码; 第 18-21 行,打印首尾套接字的文件描述符。

下一步

订阅更新,获取更多学习资料,请关注我们的 微信公众号 :

小菜学编程

资源限制 ( resource limit 或 rlimit ),是 Linux 内核控制 用户 或 进程 资源占用的机制。的更多相关文章

  1. Linux 下监控用户最大进程数参数(nproc)是否到达上限

    Linux 下监控用户最大进程数参数(nproc)是否到达上限的步骤: 1.查看各系统用户的进程(LWP)数: 注意:默认情况下采用 ps 命令并不能显示出所有的进程.因为 Linux 环境下执行多线 ...

  2. Linux内核学习笔记-2.进程管理

    原创文章,转载请注明:Linux内核学习笔记-2.进程管理) By Lucio.Yang 部分内容来自:Linux Kernel Development(Third Edition),Robert L ...

  3. 十天学Linux内核之第二天---进程

    原文:十天学Linux内核之第二天---进程 都说这个主题不错,连我自己都觉得有点过大了,不过我想我还是得坚持下去,努力在有限的时间里学习到Linux内核的奥秘,也希望大家多指点,让我更有进步.今天讲 ...

  4. Linux内核分析-创建新进程的过程

    分析Linux内核创建一个新进程的过程 task_struct结构体分析 struct task_struct{ volatile long state; //进程的状态 unsigned long ...

  5. Linux内核分析— —创建新进程的过程

    分析Linux内核创建一个新进程的过程 实验过程 要求:使用gdb跟踪分析一个fork系统调用内核处理函数sys_clone ,验证对Linux系统创建一个新进程的理解,推荐在实验楼Linux虚拟机环 ...

  6. Linux内核学习笔记二——进程

    Linux内核学习笔记二——进程   一 进程与线程 进程就是处于执行期的程序,包含了独立地址空间,多个执行线程等资源. 线程是进程中活动的对象,每个线程都拥有独立的程序计数器.进程栈和一组进程寄存器 ...

  7. 实验 六:分析linux内核创建一个新进程的过程

    实验六:分析Linux内核创建一个新进程的过程 作者:王朝宪  <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029 ...

  8. 作业六:分析Linux内核创建一个新进程的过程

    分析Linux内核创建一个新进程的过程 进程描述符PCB----task_struct数据结构 操作系统:1.进程管理 2.内存管理 3 文件系统 一.新进程如何创建和修改task_struct数据结 ...

  9. Linux内核分析第六周学习笔记——分析Linux内核创建一个新进程的过程

    Linux内核分析第六周学习笔记--分析Linux内核创建一个新进程的过程 zl + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/U ...

随机推荐

  1. 截取pod ip地址最后一列

    资源清单: --- apiVersion: extensions/v1beta1 kind: Deployment metadata: name: init-demo namespace: test ...

  2. 「HTML+CSS」--自定义加载动画【009】

    前言 Hello!小伙伴! 首先非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出- 哈哈 自我介绍一下 昵称:海轰 标签:程序猿一只|C++选手|学生 简介:因C语言结识编程,随后转入计算机 ...

  3. Unity2D项目-平台、解谜、战斗! 1.5 Player框架、技能管理组件

    各位看官老爷们,这里是RuaiRuai工作室,一个做单机游戏的兴趣作坊. 前文提到,凡是有"攻击"语义的对象,在游戏中,我们给予其一个"CanFight"组件予 ...

  4. 对象存储服务MinIO安装部署分布式及Spring Boot项目实现文件上传下载

    目录 一.MinIO快速入门 1. MinIO简介 2. CentOS7更换成阿里云镜像 3. 安装 3.1 下载 3.2 运行测试 4. 配置脚本执行文件 4.1 创建配置执行文件 4.2 执行 二 ...

  5. 通过Python实现对SQL Server 数据文件大小的监控告警

    1.需求背景 系统程序突然报错,报错信息如下: The transaction log for database '@dbname' is full. To find out why space in ...

  6. PE结构分析(二)

    在表中,我们知道了0x01 4c对应的平台结构是i386: 我们接着分析下一个字段,给出PE结构图 向后推移2个字节,现在来到(图片高亮部分): 高亮部分对应IMAGE_NT_HEADERS结构的Nu ...

  7. PowerBI 使用Bookmark

    使用PowerBI Desktop中的bookmark(书签),开发人员可以捕获报表中一个页面的当前配置,包括过滤器的设置,Visual的状态等信息,此后,开发人员可以通过激活已保存的bookmark ...

  8. zipfile tarfile模块

    zipfile --- 使用ZIP存档 这个模块提供了创建.读取.写入.添加及列出 ZIP 文件的工具 # 创建一个ZipFile对象, 可使用上下文管理 with class zipfile.Zip ...

  9. 基于golang分布式爬虫系统的架构体系v1.0

    基于golang分布式爬虫系统的架构体系v1.0 一.什么是分布式系统 分布式系统是一个硬件或软件组件分布在不同的网络计算机上,彼此之间仅仅通过消息传递进行通信和协调的系统.简单来说就是一群独立计算机 ...

  10. 关于sysmon.exe高cpu占用

    sysmon.exe是干嘛的? 这里面有介绍:https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon 是windows官方提供的监 ...