P6880-[JOI 2020 Final]オリンピックバス【最短路】
正题
题目链接:https://www.luogu.com.cn/problem/P6880
题目大意
给出\(n\)个点\(m\)条边的有向图,边有边权和一个翻转权值。
翻转至多一条边使得\(1->n->1\)往返的权值加上翻转权值最小。
\(1\leq n\leq 200,1\leq m\leq 5\times 10^4\)
解题思路
考虑到\(n\)很小可以从这个方向入手。
有时翻转会使得最短路变长,这个时候当且仅当这条边是最短路的必经边,而图上最多有\(n-1\)条必经边,所以我们如果翻转必经边时直接暴力重新计算一次最短路,否则我们就用预处理的信息来计算。
因为点很少,暴力的\(dij\)比堆优化快
时间复杂度\(O(n(n^2+m))\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
#define mp(x,y) make_pair(x,y)
using namespace std;
const ll N=210,M=5e4+10;
struct node{
ll to,next,w,v,ban;
}a[M<<1];
ll n,m,tot,ls[N],f[N],g[N],F[N],G[N],ff[N],gg[N],from[N],grom[N],ans;
bool v[N];
void addl(ll x,ll y,ll w,ll v,ll ban){
a[++tot].to=y;
a[tot].next=ls[x];
a[tot].v=v;a[tot].ban=ban;
ls[x]=tot;a[tot].w=w;
return;
}
void dij(ll *f,ll s,ll op=0){
memset(v,0,sizeof(v));f[s]=0;
for(int i=1;i<=n;i++){
int x=0;
for(int j=1;j<=n;j++)
if(!v[j])x=(f[j]<f[x])?j:x;
v[x]=1;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(a[i].ban)continue;
if(f[x]+a[i].w<f[y]){
f[y]=f[x]+a[i].w;
if(op==1)from[y]=i;
if(op==2)grom[y]=i;
}
}
}
return;
}
void bij(ll *f,ll s,ll op=0){
memset(v,0,sizeof(v));f[s]=0;
for(int i=1;i<=n;i++){
int x=0;
for(int j=1;j<=n;j++)
if(!v[j])x=(f[j]<f[x])?j:x;
v[x]=1;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(!a[i].ban)continue;
if(f[x]+a[i].w<f[y])
f[y]=f[x]+a[i].w;
}
}
return;
}
signed main()
{
scanf("%lld%lld",&n,&m);tot=1;
for(ll i=1;i<=m;i++){
ll x,y,c,d;
scanf("%lld%lld%lld%lld",&x,&y,&c,&d);
addl(x,y,c,d,0);addl(y,x,c,d,1);
}
memset(f,0x3f,sizeof(f));dij(f,1,1);
memset(g,0x3f,sizeof(g));dij(g,n,2);
memset(F,0x3f,sizeof(F));bij(F,n);
memset(G,0x3f,sizeof(G));bij(G,1);
ans=f[n]+g[1];
for(ll x=1;x<=n;x++){
for(ll i=ls[x];i;i=a[i].next){
if(a[i].ban)continue;
ll y=a[i].to,w1=f[n],w2=g[1];
if(f[x]+a[i].w+F[y]==f[n]&&i==from[y]){
a[i].ban=1;a[i^1].ban=0;
memset(ff,0x3f,sizeof(ff));dij(ff,1);
w1=ff[n];a[i].ban=0;a[i^1].ban=1;
}
else w1=min(w1,f[y]+a[i].w+F[x]);
if(g[x]+a[i].w+G[y]==g[1]&&i==grom[y]){
a[i].ban=1;a[i^1].ban=0;
memset(gg,0x3f,sizeof(gg));dij(gg,n);
w2=gg[1];a[i].ban=0;a[i^1].ban=1;
}
else w2=min(w2,g[y]+a[i].w+G[x]);
ans=min(ans,w1+w2+a[i].v);
}
}
if(ans>=2e18)puts("-1");
else printf("%lld\n",ans);
return 0;
}
P6880-[JOI 2020 Final]オリンピックバス【最短路】的更多相关文章
- JOI 2020 Final 题解
T1. 只不过是长的领带 大水题,把 \(a_i,b_i\) 从小到大排序. 发现最优方案只可能是大的 \(a_i\) 跟大的 \(b_i\) 匹配,小的 \(a_i\) 与小的 \(b_i\) 匹配 ...
- 【题解】LOJ2759. 「JOI 2014 Final」飞天鼠(最短路)
[题解]LOJ2759. 「JOI 2014 Final」飞天鼠(最短路) 考虑最终答案的构成,一定是由很多飞行+一些上升+一些下降构成. 由于在任何一个点上升或者下降代价是一样的,所以: 对于上升操 ...
- [LOJ3014][JOI 2019 Final]独特的城市——树的直径+长链剖分
题目链接: [JOI 2019 Final]独特的城市 对于每个点,它的答案最大就是与它距离最远的点的距离. 而如果与它距离为$x$的点有大于等于两个,那么与它距离小于等于$x$的点都不会被计入答案. ...
- JOI 2018 Final 题解
题目列表:https://loj.ac/problems/search?keyword=JOI+2018+Final T1 寒冬暖炉 贪心 暴力考虑每相邻两个人之间的间隔,从小到大选取即可 #incl ...
- LOJ#2351. 「JOI 2018 Final」毒蛇越狱
LOJ#2351. 「JOI 2018 Final」毒蛇越狱 https://loj.ac/problem/2351 分析: 首先有\(2^{|?|}\)的暴力非常好做. 观察到\(min(|1|,| ...
- 「JOI 2017 Final」JOIOI 王国
「JOI 2017 Final」JOIOI 王国 题目描述 题目译自 JOI 2017 Final T3「 JOIOI 王国 / The Kingdom of JOIOI」 JOIOI 王国是一个 H ...
- JOI 2019 Final合集
JOI 2019 Final 合集 #3010. 「JOI 2019 Final」勇者比太郎 其实如果读懂题了就是水题了 题目就是让你求满足条件的\(JOI\),使得\(O\)在\(J\)同行的 ...
- 【LOJ】#3014. 「JOI 2019 Final」独特的城市(长链剖分)
LOJ#3014. 「JOI 2019 Final」独特的城市(长链剖分) 显然我们画一条直径,容易发现被统计的只可能是直径某个距离较远的端点到这个点的路径上的值 用一个栈统计可以被统计的点,然后我们 ...
- 「JOI 2014 Final」飞天鼠
「JOI 2014 Final」飞天鼠 显然向上爬是没有必要的,除非会下降到地面以下,才提高到刚好为0. 到达一个点有两种情况:到达高度为0和不为0. 对于高度不为0的情况,显然花费的时间越少高度越高 ...
- 「JOI 2015 Final」城墙
「JOI 2015 Final」城墙 复杂度默认\(m=n\) 暴力 对于点\((i,j)\),记录\(ld[i][j]=min(向下延伸的长度,向右延伸的长度)\),\(rd[i][j]=min(向 ...
随机推荐
- wpf 的style
<ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" x ...
- Json序列化更新好友列表
一.概述 使用Newtonsoft.Json开源库进行序列化 二.代码 using Newtonsoft.Json; using System; using System.Collections.Ge ...
- C++ 计算MD5
头文件: #pragma once #ifndef MD5_H #define MD5_H #include <string> #include <fstream> /* Ty ...
- ubuntu编译安装python3.6.5
去官网下载安装包放到~/software/ 下 1更新软件库 sudo apt-get update 2安装相应的开发库 sudo apt-get install zlib1g-dev libbz ...
- 从eclipse转idea不适记录【持续更新】
使用eclipse和idea时,快捷键对比 从一些最扎心的开始: 关于print一类的打印输出:System.out.println()补全 idea中可以sout.souf.serr:分别对应out ...
- rabbitMq可靠性投递之配置(消息至交换机,至队列不通的回调)
@Bean public RabbitTemplate rabbitTemplate(CachingConnectionFactory factory) { //若使用confirm-callback ...
- jekins
上面是:maven配置 git安装: 容器安装: 容器配置与发布: 添加安全认证(如果tomcat没有设置密码这里也不需要设置:) 访问尝试:本地测试前置practice_war的影响 Jekins实 ...
- oracle基础知识及语法
ORACLE支持五种类型的完整性约束 NOT NULL (非空)--防止NULL值进入指定的列,在单列基础上定义,默认情况下,ORACLE允许在任何列中有NULL值. CHECK (检查)--检查在约 ...
- MySQL-存储引擎-1
一.MySQL存储引擎 mysql> create table country( -> country_id smallint unsigned not null auto_increme ...
- Servlet过滤器----Filter
JavaEE的Servlet规范描述了三种技术:Servlet,Filter,Listener (一)过滤器简介 Filter也称之为过滤器,它是Servlet技术中最实用的技术,WEB开发人员通过F ...