P4491-[HAOI2018]染色【多项式,二项式反演】
正题
题目链接:https://www.luogu.com.cn/problem/P4491
题目大意
给\(n\)个物品染上\(m\)种颜色,若恰好有\(k\)个颜色的物品个数为\(S\)那么就会产生\(W_k\)的贡献。求所有染色方案的贡献和
\(1\leq n\leq 10^7,1\leq m\leq 10^5,1\leq S\leq 150\)
解题思路
先考虑一个简单的想法,我们强制染上\(k\)种颜色,那么方案就是
\]
(选出\(k\)种,然后重排公式,剩下的随便选)
发现这样剩下的颜色也有可能会有贡献,设\(G(k)\)表示恰好有\(k\)种出现次数为\(S\)的颜色的话,那么他们之间有公式
\]
然后直接二项式反演就有
\]
拆开组合数就有
\]
这里面和\(i\)有关的下标只有\(i\)和\(i-k\),是一个卷积的形式,直接\(NTT\)就好了。
时间复杂度\(O(n\log n)\)
当然也可以用指数型生成函数来推导,但是我不会
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e7+10,P=1004535809;
ll n,m,S,ans,inv[N],fac[N],f[N],g[N],r[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void NTT(ll *f,ll n,ll op){
for(ll i=0;i<n;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(ll p=2;p<=n;p<<=1){
ll len=(p>>1),tmp=power(3,(P-1)/p);
if(op==-1)tmp=power(tmp,P-2);
for(ll k=0;k<n;k+=p){
ll buf=1;
for(ll i=k;i<k+len;i++){
ll tt=buf*f[i+len]%P;
f[i+len]=(f[i]-tt+P)%P;
f[i]=(f[i]+tt)%P;
buf=buf*tmp%P;
}
}
}
if(op==-1){
ll invn=power(n,P-2);
for(ll i=0;i<n;i++)
f[i]=f[i]*invn%P;
}
return;
}
ll C(ll n,ll m)
{return fac[n]*inv[m]%P*inv[n-m]%P;}
signed main()
{
scanf("%lld%lld%lld",&n,&m,&S);inv[1]=1;
for(ll i=2;i<N;i++)inv[i]=P-(P/i)*inv[P%i]%P;
inv[0]=fac[0]=1;ll pm=m;m=min(m,n/S);
for(ll i=1;i<N;i++)
fac[i]=fac[i-1]*i%P,inv[i]=inv[i-1]*inv[i]%P;
for(ll i=0,z=1;i<=m;i++){
f[i]=C(pm,i)*fac[n]%P*z%P*inv[n-i*S]%P;
f[i]=f[i]*power(pm-i,n-i*S)%P;z=z*inv[S]%P;
f[i]=f[i]*fac[i]%P;
}
for(ll i=0;i<=m;i++)g[i]=(i&1)?(P-inv[i]):(inv[i]);
reverse(f,f+1+m);
ll l=1;while(l<=2*m+1)l<<=1;
for(ll i=0;i<l;i++)r[i]=(r[i>>1]>>1)|((i&1)?(l>>1):0);
NTT(f,l,1);NTT(g,l,1);
for(ll i=0;i<l;i++)f[i]=f[i]*g[i]%P;
NTT(f,l,-1);reverse(f,f+1+m);
for(ll i=0;i<=m;i++){
ll p=f[i]*inv[i]%P;
ll w;scanf("%lld",&w);
(ans+=w*p%P)%=P;
}
printf("%lld\n",ans);
return 0;
}
P4491-[HAOI2018]染色【多项式,二项式反演】的更多相关文章
- [洛谷P4491] [HAOI2018]染色
洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度 ...
- P4491 [HAOI2018]染色
题目链接:洛谷 题目大意:$n$个位置染$m$种颜色,如果出现次数恰为$S$次的颜色有$k$种,则对答案有$W_k$的贡献,求所有染色方案的答案之和$\bmod 1004535809$. 数据范围:$ ...
- P4491 [HAOI2018]染色 容斥+NTT
$ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 ...
- P4491 [HAOI2018]染色 广义容斥 NTT 生成函数
LINK:染色 算是比较常规的广义容斥. 算恰好k个 可以直接转成至少k个. 至少k个非常的好求 直接生成函数. 设\(g_k\)表示至少有k个颜色是满足的 那么有 \(g_k=C(m,k)\frac ...
- luogu P4491 [HAOI2018]染色
传送门 这一类题都要考虑推式子 首先推出题目要求的式子,枚举正好有\(s\)个颜色的种类(范围\([0,p=min(\lfloor\frac{n}{s}\rfloor,m)]\)),然后对于后面的颜色 ...
- 洛咕 P4491 [HAOI2018]染色
显然颜色数量不会超过\(lim=\min(m,n/S)\) 考虑容斥,计算恰好出现了\(S\)次的颜色有至少\(i\)种的方案数\(f[i]\),钦定\(i\)种颜色正好放\(S\)种 有\(m\)种 ...
- 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...
- LOJ2527 HAOI2018 染色 容斥、生成函数、多项式求逆
传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制 ...
- bzoj5093图的价值:多项式,斯特林数(二项式反演)
Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为 ...
随机推荐
- virtualenv 创建python虚拟环境
为什么要创建python虚拟环境 在开发Python应用程序的时候,系统安装的Python3只有一个版本:3.4.所有第三方的包都会被pip安装到Python3的site-packages目录下. 如 ...
- [ES6深度解析]13:let const
当Brendan Eich在1995年设计了JavaScript的第一个版本时,他犯了很多错误,包括从那时起就成为该语言一部分的一些错误,比如Date对象和当你不小心将它们相乘时对象会自动转换为NaN ...
- flutter实现文字超出最大宽度显示省略号
Container( width: 60, child: Text( '...', maxLines: 1, overflow: TextOverflow.ellipsis, ), ) 给Text外层 ...
- 轻松让你的nginx服务器支持HTTP2协议
目录 简介 HTTP1.1和HTTP2 安装最新的nginx 开启HTTP2支持 添加SSL支持 修改加密算法 Diffie–Hellman对消息进行加密 重定向所有的HTTP请求到HTTPS 启动n ...
- 详解 Interpolator动画插值器
Interpolator 被用来修饰动画效果,定义动画的变化率.在Android源码中对应的接口类为TimeInterpolator,通过输入均匀变化的0~1之间的值,可以得到匀速.正加速.负加速.无 ...
- springcloud<seata配置文件解释及其说明>
出现如下错误时: Could not found property service.disableGlobalTransaction, try to use default value instead ...
- Learning ROS: Aboat URDF (Unified Robot Description Format)
Building a Visual Robot Model with URDF from Scratch roscore &# With $(find urdf_tutorial), this ...
- MySQL-表迁移工具的选型-xtrabackup的使用
1.1. 场景 有的时候test人员可能需要在测试库上比较新的数据,这时候只能是从生产库上面去那了.如果是小表还好实用mysqldump/mysqlpump就可以轻松的解决.但是,如果遇到了大表这将是 ...
- win10画板超实用的快捷键
win10画板超实用的快捷键链接: Windows 7 画图中的快捷键 Windows中画图的快捷键 其中有windows默认的快捷键,关于画图工具加入到快捷工具也有详细的介绍.
- Linux查看英伟达GPU信息
命令: nvidia-smi 结果: