随机森林和Extra-Trees

随机森林

先前说了bagging的方法,其中使用的算法都是决策树算法,对于这样的模型,因为具有很多棵树,而且具备了随机性,那么就可以称为随机森林

在sklearn中封装了随机森林的类,可以使用这个类直接创建出一个随机森林,同时sklearn中的随机森林模型的随机性更为复杂,对于决策树来说,都是对每一个节点进行划分,详情看这里

在sklearn中的封装的随机森林默认在每一个节点上,都是在一个随机的特征子集上寻找一个最优的划分,并不是在节点上对所有的特征进行划分,这就增加了每一个子模型的随机性

具体使用

(在notebook中)

加载好需要的类库,虚拟数据的随机种子设置为666,绘制图像

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
X,y = datasets.make_moons(n_samples=500,noise=0.3,random_state=666)
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])

图像如下

使用sklearn提供的随机模型只要调用RandomForestClassifier这个类就可以,然后实例化,传入参数,设置样本点为500,随机种子为666,使用全部核心并行,并使用未使用的样本点进行测试计算准确度,然后进行训练,计算准确度

from sklearn.ensemble import RandomForestClassifier

rf_clf = RandomForestClassifier(n_estimators=500,random_state=666,oob_score=True,n_jobs=-1)
rf_clf.fit(X,y)
rf_clf.oob_score_

结果如下

新添加一个参数进行实例化,传入参数max_leaf_nodes,限制每一个决策树的叶子节点,设置为16,然后训练并计算样本的准确度

rf_clf2 = RandomForestClassifier(n_estimators=500,max_leaf_nodes=16,random_state=666,oob_score=True,n_jobs=-1)
rf_clf2.fit(X,y)
rf_clf2.oob_score_

结果如下

可以不断调参以获得更好的准确度,这里不难发现,随机森林的参数是可以使用决策树的参数的

Extra trees

和随机森林非常类似的还有Extra trees,极其随机的森林,其极其的随机性表现在,在节点划分上,直接使用随机的特征和随机的阈值,可以想象,这每棵树的差别会更加的大,很随机,这种方式提供了额外的随机性,而且抑制了过拟合(方差),但是这样的操作增大了bias(偏差),所以要看问题本身是不是适合使用这种方法

这个方法比起随机森林而言,有着更快的训练速度,在sklearn中使用也很简单,调用ExtraTreesClassifier这个类就可以了,使用的参数也和RandomForestClassifier一样,需要注意的是,bootsreap默认是flase,所以要使用放回取样还需要设置为true,然后训练并计算准确度

from sklearn.ensemble import ExtraTreesClassifier

et_clf = ExtraTreesClassifier(n_estimators=500,bootstrap=True,oob_score=True,random_state=666)
et_clf.fit(X,y)
et_clf.oob_score_

结果如下

添加一个新的参数,添加max_leaf_nodes=,设置为16,然后训练模型并计算准确度

et_clf2 = ExtraTreesClassifier(n_estimators=500,max_leaf_nodes=16,bootstrap=True,oob_score=True,random_state=666)
et_clf2.fit(X,y)
et_clf2.oob_score_

结果如下

其实集成学习也可以解决回归问题,在sklearn中可以使用很多类来解决,比如baggingregressor,randomforestregressor,extratreesregressor等类,使用方式和上面大致一样,不过因为解决的是回归问题,所以输出结果是一个数字

【笔记】随机森林和Extra-Trees的更多相关文章

  1. Python机器学习笔记——随机森林算法

    随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代 ...

  2. 笔记+R︱风控模型中变量粗筛(随机森林party包)+细筛(woe包)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本内容来源于CDA-DSC课程内容,原内容为& ...

  3. [ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest)

    [ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支 ...

  4. Machine Learning笔记整理 ------ (五)决策树、随机森林

    1. 决策树 一般的,一棵决策树包含一个根结点.若干内部结点和若干叶子结点,叶子节点对应决策结果,其他每个结点对应一个属性测试,每个结点包含的样本集合根据属性测试结果被划分到子结点中,而根结点包含样本 ...

  5. 【R语言学习笔记】 Day1 CART 逻辑回归、分类树以及随机森林的应用及对比

    1. 目的:根据人口普查数据来预测收入(预测每个个体年收入是否超过$50,000) 2. 数据来源:1994年美国人口普查数据,数据中共含31978个观测值,每个观测值代表一个个体 3. 变量介绍: ...

  6. 机器学习之Bagging与随机森林笔记

    集成学习通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能.这对“弱学习器”尤为明显,因此集成学习的很多理论研究都是针对弱学习器进行的,而基学习器有时也被直接称为弱学习器.虽然从理论上来 ...

  7. scikit-learn随机森林调参小结

    在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注 ...

  8. Bagging与随机森林算法原理小结

    在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合. ...

  9. R语言︱决策树族——随机森林算法

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...

随机推荐

  1. CentOS-Docker安装PostgreSQL(单点)

    下载镜像 $ docker pull postgres 创建目录 $ mkdir -p /usr/postgres/data $ chmod -R 755 /usr/postgres/data 运行镜 ...

  2. 我是如何用redis做实时订阅推送的(转)

    前阵子开发了公司领劵中心的项目,这个项目是以redis作为关键技术落地的.       先说一下领劵中心的项目吧,这个项目就类似京东app的领劵中心,当然图是截取京东的,公司的就不截了...   其中 ...

  3. buu signin

    一.拖入ida,来静态分析F5大法好 要注意的点: 1._gmz_init_set_str() 这个函数,也是看师傅的wp,学到的,以后还是得多google, 本质上是这个函数: int mpz_in ...

  4. Spring Boot中的那些生命周期和其中的可扩展点(转)

    前言可扩展点的种类Spring Boot启动过程 1.SpringApplication的启动过程 2.ApplicationContext的启动过程 3.一般的非懒加载单例Bean在Spring B ...

  5. Java | this的本质 和 static的本质

    this 在说this之前先说一下,对象创建的过程: 1.分配对象空间,并将对象成员变量初始化. 2.执行属性值的显式初始化. 3.执行构造方法. 4.返回相关的地址给相关的对象.   this的本质 ...

  6. Selenium执行完毕未关闭chromedriver/geckodriver进程的解决办法(java版+python版)

    selenium操作chrome浏览器需要有ChromeDriver驱动来协助.webdriver中关浏览器关闭有两个方法,一个叫quit,一个叫close. 1 /** 2 * Close the ...

  7. DEV C++5.11编译没有结果提示

    点击"视图"菜单--选择"浮动报告 窗口"

  8. 使用宝塔配置laravel站点时,遇到open_basedir restriction in effect. 原因与解决方法

    今天一位朋友在linux服务器部署thinkphp5的时候PHP报了这个错误,如下: Warning: require(): open_basedir restriction in effect. F ...

  9. odoo前后端交互详解

    为了简单叙述,暂时不考虑多个db的情况(主要是懒得说没有db或者多个db实例的情况)当odoo指定数据库开启服务时(也就是odoo-bin -d <some_db_name> ),我们使用 ...

  10. 第三篇 -- SpringBoot打包成jar包

    本篇介绍怎么将SprintBoot项目打包成jar包. 第一步:点击IDEA右侧的maven. 第二步:双击package,然后就会开始打包,当出现build success时,就打包成功了,一般在t ...