MindSpore应用目标
以下将展示MindSpore近一年的高阶计划,会根据用户的反馈诉求,持续调整计划的优先级。
总体而言,会努力在以下几个方面不断改进。
1. 提供更多的预置模型支持。
2. 持续补齐API和算子库,改善易用性和编程体验。
3. 提供华为昇腾AI处理器的全面支持,并不断优化性能及软件架构。
4. 完善可视化、调试调优、安全相关工具。
预置模型
· CV:目标检测、GAN、图像分割、姿态识别等场景经典模型。
· NLP:RNN、Transformer类型神经网络,拓展基于Bert预训练模型的应用。
· 其它:GNN、强化学习、概率编程、AutoML等。
易用性
· 补齐算子、优化器、Loss函数等各类API
· 完善Python语言原生表达支持
· 支持常见的Tensor/Math操作
· 增加更多的自动并行适用场景,提高策略搜索的准确性
性能优化
· 优化编译时间
· 低比特混合精度训练/推理
· 提升内存使用效率
· 提供更多的融合优化手段
· 加速PyNative执行性能
架构演进
· 图算融合优化:使用细粒度Graph IR表达算子,构成带算子边界的中间表达,挖掘更多图层优化机会。
· 支持更多编程语言
· 优化数据增强的自动调度及分布式训练数据缓存机制
· 持续完善MindSpore IR
· Parameter Server模式分布式训练
MindInsight调试调优
· 训练过程观察
o 直方图
o 计算图/数据图展示优化
o 集成性能Profiling/Debugger工具
o 支持多次训练间的对比
· 训练结果溯源
o 数据增强溯源对比
· 训练过程诊断
o 性能Profiling
o 基于图模型的Debugger
MindArmour安全增强包
· 测试模型的安全性
· 提供模型安全性增强工具
· 保护训练和推理过程中的数据隐私
推理框架
· 算子性能与完备度的持续优化
· 支持语音模型推理
· 端侧模型的可视化
· Micro方案,适用于嵌入式系统的超轻量化推理, 支持ARM Cortex-A、Cortex-M硬件
· 支持端侧重训及联邦学习
· 端侧自动并行特性
· 端侧MindData,包含图片Resize、像素数据转换等功能
· 配套MindSpore混合精度量化训练(或训练后量化),实现混合精度推理,提升推理性能
· 支持Kirin NPU、MTK APU等AI加速硬件
· 支持多模型推理pipeline
· C++构图接口
 

MindSpore应用目标的更多相关文章

  1. MindSpore技术理解(上)

    MindSpore技术理解(上) 引言 深度学习研究和应用在近几十年得到了爆炸式的发展,掀起了人工智能的第三次浪潮,并且在图像识别.语音识别与合成.无人驾驶.机器视觉等方面取得了巨大的成功.这也对算法 ...

  2. 【MindSpore】Docker上成功使用MindSpore1.0.0的GPU版本

    本文是在宿主机Ubuntu16.04上安装Docker(nvidia-docker),并成功进行MindSpore1.0.0的GPU训练: Ubuntu 16.04 Docker Nvidia-doc ...

  3. 几个小实践带你快速上手MindSpore

    摘要:本文将带大家通过几个小实践快速上手MindSpore,其中包括MindSpore端边云统一格式及华为智慧终端背后的黑科技. MindSpore介绍 MindSpore是一种适用于端边云场景的新型 ...

  4. 技术干货 | 基于MindSpore更好的理解Focal Loss

    [本期推荐专题]物联网从业人员必读:华为云专家为你详细解读LiteOS各模块开发及其实现原理. 摘要:Focal Loss的两个性质算是核心,其实就是用一个合适的函数去度量难分类和易分类样本对总的损失 ...

  5. MindSpore模型精度调优实践

    MindSpore模型精度调优实践 引论:在模型的开发过程中,精度达不到预期常常让人头疼.为了帮助用户解决模型调试调优的问题,为MindSpore量身定做了可视化调试调优组件:MindInsight. ...

  6. MindSpore:自动微分

    MindSpore:自动微分 作为一款「全场景 AI 框架」,MindSpore 是人工智能解决方案的重要组成部分,与 TensorFlow.PyTorch.PaddlePaddle 等流行深度学习框 ...

  7. MindSpore技术理解(下)

    MindSpore技术理解(下) 4 GraphEngine 由于深度学习算法需要进行大量的计算,很多公司都设计了自己的深度学习专用处理器(如谷歌的张量处理器.阿里巴巴的含光等),华为也发布了自主设计 ...

  8. MindSpore API编程概述

    MindSpore API编程概述 总体架构 MindSpore是一个全场景深度学习框架,旨在实现易开发.高效执行.全场景覆盖三大目标,其中易开发表现为API友好.调试难度低,高效执行包括计算效率.数 ...

  9. MindSpore接口mindspore::api

    MindSpore接口mindspore::api Context #include <context.h> Context类用于保存执行中的环境变量. 静态公有成员函数 Instance ...

随机推荐

  1. SpringCloud之(豪猪)Hystrix限流、熔断、降级

    Spring Cloud 微服务架构学习记录与示例 一.初识Hystrix Hystrix [hɪst'rɪks],中文含义是豪猪,因其背上长满棘刺,从而拥有了自我保护的能力.本文所说的Hystrix ...

  2. hdu4278 小想法

    题意:       有几个计数器,从1开始计数,计数器有问题,没有3,8这两个数字,只要出现3或者8,那么直接跳过,如 12579 下一个数字就是 12590 ,给你一个数字,问他实际计数了多少. 思 ...

  3. POJ2983 查分约束系统

    题意:        给你n个点,然后给你两种情况,P a b c,表明a在b的北边c那么远,V a b 表明a在b的北边(距离最少是1),问你这些条件是否冲突. 思路:       一开始想用带权并 ...

  4. 安装全局消息钩子实现dll窗体程序注入

    说明{      通过设置全局消息钩子来实现dll注入,然后窗体有相关消息请求的时候就会自动加载注入dll, 然后在入口处做处理就可以了.注入方式简单很多,比代码注入和lsp等注入都简单,就不解释了. ...

  5. 关于终端设备的设备唯一性的那些事之IMEI(转)

    最近和别人聊起来数据上报,一起讨论到imei和MAC地址,然后发现一个问题:知道这两个东西都不唯一,但是不知道为什么---- 回来上各种小网站巴拉巴拉找了一下,终于大概了解了前世今生,这里简单汇总一下 ...

  6. 利用cm压缩包手动安装cm和cdh

    安装准备: 1.操作系统为centos6.9 CentOS-6.9-x86_64-bin-DVD1to2 2.安装Oracle JDK (1.8u121) 下载jdk-8u121-linux-x64. ...

  7. [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximati

    [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要 ...

  8. SQLFlow的几种关系

    SQLFlow的几种关系 SQLFlow可以用来分析各种数据对象之间的依赖关系,其中包含了fdd, fdr, frd, join 四种关系 fdd:表示数据从源列到目标列的关系 frd:表示结果集返回 ...

  9. 【例 3】 修改 bols 文件的 atime 和 mtime。 [root@localhost ~]# touch -d "2017-05-04 15:44" bols

    Linux touch命令:创建文件及修改文件时间戳 < Linux删除空目录(rmdir命令)Linux在文件之间建立软/硬链接(ln命令) > <Linux就该这么学>是一 ...

  10. Linux巡检常用命令

    # uname -a # 查看内核/操作系统/CPU信息 # head -n 1 /etc/issue # 查看操作系统版本 # cat /proc/cpuinfo # 查看CPU信息 # hostn ...