\(\mathcal{Description}\)

  Link.

  令 \(\sigma(n)\) 为 \(n\) 的约数之和。求:

\[\sum_{i=1}^n\sum_{j=1}^n\max\{i,j\}\sigma(ij)\bmod(10^9+7)
\]

  多测,\(n\le10^6\),数据组数 \(\le5\times10^4\)。

\(\mathcal{Solution}\)

  直 接 来 owo!

\[\sum_{i=1}^n\sum_{j=1}^n\max\{i,j\}\sigma(ij)=2\sum_{i=1}^ni\sum_{j=1}^i\sigma(ij)-\sum_{i=1}^ni\sigma(i^2)
\]

  先研究一下 \(\sigma(ij)\)。考虑分别枚举 \(i\) 的约数 \(x\) 和 \(j\) 的约数 \(y\),若 \(x\perp\frac{j}y\),则对 \(\sigma(ij)\) 贡献一个 \(xy\),显然贡献不重不漏。即:

\[\sigma(ij)=\sum_{x|i}\sum_{y|j}xy[x\perp\frac{j}y]
\]

  考虑原式前一项,记 \(f(n)=n\sum_{i=1}^n\sigma(ni)\),有:

\[\begin{aligned}
f(n)&=n\sum_{i=1}^n\sum_{x|n}\sum_{y|i}xy[x\perp\frac{i}y]\\
&=n\sum_{i=1}^n\sum_{x|n}\sum_{y|i}xy\sum_{d|x\land d|\frac{i}y}\mu(d)\\
&=n\sum_{i=1}^n\sum_{d|n\land d|i}\mu(d)\sum_{x|n\land d|x}\sum_{y|i\land d|y}\frac{ix}y\\
&=n\sum_{i=1}^n\sum_{d|n\land d|i}\mu(d)\sum_{x|\frac{n}d}\sum_{y|\frac{i}d}\frac{ix}y~~~~~~~~(x,y\mbox{ 同时约掉 } d)\\
&=n\sum_{i=1}^n\sum_{d|n\land d|i}\mu(d)\sigma(\frac{n}d)\sum_{y|\frac{i}d}\frac{i}y\\
&=n\sum_{i=1}^n\sum_{d|n\land d|i}\mu(d)\sigma(\frac{n}d)d\sum_{y|\frac{i}d}\frac{\frac{i}y}d\\
&=n\sum_{i=1}^n\sum_{d|n\land d|i}d\mu(d)\sigma(\frac{n}d)\sigma(\frac{i}d)\\
&=n\sum_{d|n}d\mu(d)\sigma(\frac{n}d)\sum_{i=1}^\frac{n}{d}\sigma(i)
\end{aligned}
\]

  筛出 \(\mu,\sigma\),枚举 \(d\) 和 \(\frac{n}d\),可以 \(\mathcal O(n\ln n)\) 算出所有 \(f\)。

  后一项呢,就是要筛 \(\sigma(n^2)\)。和筛 \(\sigma(n)\) 类似,记录一下当前最小素因子的等比数列求和,就可以 \(\mathcal O(n)\) 算出来。

  综上,复杂度 \(\mathcal O(n\ln n+T)\)。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>

typedef long long LL;

inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
} const int MAXN = 1e6, MOD = 1e9 + 7;
int pn, pr[MAXN + 5], mpwr[MAXN + 5], mu[MAXN + 5], sig[MAXN + 5], sigs[MAXN + 5];
int f[MAXN + 5], ans[MAXN + 5];
LL dpwr[MAXN + 5], g[MAXN + 5];
bool vis[MAXN + 5]; inline void init ( const int n ) {
mu[1] = sig[1] = sigs[1] = g[1] = 1;
for ( int i = 2; i <= n; ++ i ) {
if ( !vis[i] ) {
mu[pr[++ pn] = i] = -1;
sig[i] = mpwr[i] = i + 1;
dpwr[i] = g[i] = 1ll * i * i + i + 1;
}
for ( int j = 1, t; j <= pn && ( t = i * pr[j] ) <= n; ++ j ) {
vis[t] = true;
if ( !( i % pr[j] ) ) {
mpwr[t] = mpwr[i] * pr[j] + 1;
dpwr[t] = dpwr[i] * pr[j] * pr[j] + pr[j] + 1;
sig[t] = sig[i] / mpwr[i] * mpwr[t];
g[t] = g[i] / dpwr[i] * dpwr[t];
break;
}
mu[t] = -mu[i];
mpwr[t] = mpwr[pr[j]];
dpwr[t] = dpwr[pr[j]];
sig[t] = sig[i] * sig[pr[j]];
g[t] = g[i] * g[pr[j]];
}
sigs[i] = ( sigs[i - 1] + sig[i] ) % MOD;
}
for ( int i = 1; i <= n; ++ i ) g[i] = i * g[i] % MOD;
for ( int i = 1; i <= n; ++ i ) {
for ( int j = 1, t = n / i; j <= t; ++ j ) {
f[i * j] = ( f[i * j] + 1ll * i * mu[i] * sig[j] % MOD * sigs[j] ) % MOD;
}
}
for ( int i = 1; i <= n; ++ i ) {
f[i] = 1ll * i * ( f[i] + MOD ) % MOD;
ans[i] = ( ( ans[i - 1] + 2ll * f[i] - g[i] ) % MOD + MOD ) % MOD;
}
} int main () {
init ( MAXN );
for ( int T = rint (), i = 1; i <= T; ++ i ) {
printf ( "Case #%d: %d\n", i, ans[rint ()] );
}
return 0;
}

\(\mathcal{Details}\)

  突然觉得推式子好养生啊。(

Solution -「51nod 1584」加权约数和的更多相关文章

  1. Solution -「51nod 1514」美妙的序列

    \(\mathcal{Description}\)   Link.   称排列 \(\{p_n\}\) 美妙,当且仅当 \((\forall i\in[1,n))(\max_{j\in[1,i]}\{ ...

  2. Solution -「51nod 1868」彩色树

    \(\mathcal{Description}\)   Link & 双倍经验 Link.   给定一棵 \(n\) 个结点的树,每个结点有一种颜色.记 \(g(u,v)\) 表示 \(u\) ...

  3. Solution -「51nod 1355」斐波那契的最小公倍数

    \(\mathcal{Description}\)   Link.   令 \(f\) 为 \(\text{Fibonacci}\) 数列,给定 \(\{a_n\}\),求: \[\operatorn ...

  4. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  5. Solution -「CTS 2019」「洛谷 P5404」氪金手游

    \(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...

  6. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

  7. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  8. Solution -「简单 DP」zxy 讲课记实

    魔法题位面级乱杀. 「JOISC 2020 Day4」治疗计划 因为是不太聪明的 Joker,我就从头开始理思路了.中途也会说一些和 DP 算法本身有关的杂谈,给自己的冗长题解找借口. 首先,治疗方案 ...

  9. Solution -「基环树」做题记录

    写的大多只是思路,比较简单的细节和证明过程就不放了,有需者自取. 基环树简介 简单说一说基环树吧.由名字扩展可得这是一类以环为基础的树(当然显然它不是树. 通常的表现形式是一棵树再加一条非树边,把图画 ...

随机推荐

  1. springMVC+redis+redis自定义工具类 的配置

    1. maven项目,加入这一个依赖包即可, <dependency> <groupId>redis.clients</groupId> <artifactI ...

  2. spring cloud Zuul 多层拦截 --- 心得

    1.前言 根据教材.博客文章的实例实操,基本都是单层拦截,没有找到多层拦截的具体写法 ,让我走了很多弯路,我将其写在这里,以待以后参考. 2.环境 spring boot : 2.1.6.RELEAS ...

  3. MongoDB之几种情况下的索引选择策略

    一.MongoDB如何选择索引 如果我们在Collection建了5个index,那么当我们查询的时候,MongoDB会根据查询语句的筛选条件.sort排序等来定位可以使用的index作为候选索引:然 ...

  4. 更快的Maven构建工具mvnd和Gradle哪个更快?

    Maven 作为经典的项目构建工具相信很多人已经用很久了,但如果体验过 Gradle,那感觉只有两个字"真香". 前段时间测评了更快的 Maven 构建工具 mvnd,感觉性能挺高 ...

  5. Solon Web 开发,五、数据访问、事务与缓存应用

    Solon Web 开发 一.开始 二.开发知识准备 三.打包与运行 四.请求上下文 五.数据访问.事务与缓存应用 六.过滤器.处理.拦截器 七.视图模板与Mvc注解 八.校验.及定制与扩展 九.跨域 ...

  6. yieId详解,以及和return的区别

    def foo(): print("starting...") while True: res = yield 4 print("res:",res) g = ...

  7. javaweb登陆界面实现不同角色进入不同界面

    目录结构 类包: AccountBean.java AccountDao.java JudgeServlet.java 登陆界面: index.jsp 代码实现 AccountBean.java pa ...

  8. linux字符编码防止乱码

    一:linux字符编码 en_US.UTF-8 : 美式英文,utf-8 zh_CN.UTF-8 临时优化 export LANG=zh_CN.UTF-8 : 设置编码 永久优化 vim /etc/l ...

  9. py笔记第一篇

    #!/usr/bin/python #coding=utf-8 #@rename file #@2019/11/27 import os ls = os.rename('/root/tigergao. ...

  10. React 世界的一等公民 - 组件

    猪齿鱼Choerodon平台使用 React 作为前端应用框架,对前端的展示做了一定的封装和处理,并配套提供了前端组件库Choerodon UI.结合实际业务情况,不断对组件优化设计,提高代码质量. ...