题目描述

给定两个大小分别为 mn 的正序(从小到大)数组 nums1nums2。请你找出并返回这两个正序数组的 中位数

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2

示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

示例 3:

输入:nums1 = [0,0], nums2 = [0,0]
输出:0.00000

示例 4:

输入:nums1 = [], nums2 = [1]
输出:1.00000

示例 5:

输入:nums1 = [2], nums2 = []
输出:2.00000

提示:

  • nums1.length == m
  • nums2.length == n
  • 0 <= m <= 1000
  • 0 <= n <= 1000
  • 1 <= m + n <= 2000
  • -106 <= nums1[i], nums2[i] <= 106

进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决此问题吗?

LeetCode

解法

方法一 暴力搜索

直接合并两个数组,时间复杂度为O(n+m),空间复杂度为O(1)

class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int m = nums1.length;
int n = nums2.length;
int len = m + n;
int[] mid = new int[2];
// 定义两个指针
int i = 0, j = 0, k = 0;
while (i + j <= (len >> 1)) {
k = i + j == (len >> 1) ? 1 : 0;
if (i <= m - 1 && j <= n - 1) {
mid[k] = nums1[i] <= nums2[j] ? nums1[i++] : nums2[j++];
}
else if (i == m) {
mid[k] = nums2[j++];
}
else {
mid[k] = nums1[i++];
}
}
if ((len & 1) == 1) {
return mid[1];
}
else {
return (mid[0] + mid[1])/2.0;
}
}
} Accepted
2094/2094 cases passed (2 ms)
Your runtime beats 100 % of java submissions
Your memory usage beats 32.02 % of java submissions (39.8 MB)

方法二 二分查找

用二分查找找到第k小的数字,时间复杂度为O(log(m+n)),空间复杂度为O(1)

class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int m = nums1.length;
int n = nums2.length;
int len = m + n;
if ((len & 1) == 1) {
int midIdx = len >> 1;
double mid = getKthElement(nums1, nums2, midIdx + 1);
return mid;
}
else {
int midIdx1 = len >> 1 - 1;
int midIdx2 = len >> 1;
double mid = (getKthElement(nums1, nums2, midIdx1 + 1) + getKthElement(nums1, nums2, midIdx2 + 1))/ 2.0;
return mid;
}
} public int getKthElement(int[] nums1, int[] nums2, int k) {
int m = nums1.length, n = nums2.length;
int offset1 = 0, offset2 = 0; while (true) {
// 边界情况,返回终值
// 1.有一个数组遍历完
if (offset1 == m){
return nums2[offset2 + k - 1];
}
if (offset2 == n){
return nums1[offset1 + k - 1];
}
// 2.k值为1
if (k == 1) {
return Math.min(nums1[offset1], nums2[offset2]);
} // 正常情况
// 判断索引, 是否会出界
int mid = k >> 1;
int idx1 = Math.min(offset1 + mid, m) - 1;
int idx2 = Math.min(offset2 + mid, n) - 1; // 判断索引值大小, 更新k值和偏移量
if (nums1[idx1] <= nums2[idx2]) {
k -= (idx1 - offset1 + 1); // 正常情况如果不出界,就是减去mid
offset1 = idx1 + 1;
}
else {
k -= (idx2 - offset2 + 1);
offset2 = idx2 + 1;
}
}
}
}

leetcode 刷题(数组篇)4题 寻找两个正序数组的中位数(二分查找)的更多相关文章

  1. leetcode 4. Median of Two Sorted Arrays 寻找两个正序数组的中位数(困难)

    一.题目大意 标签: 查找 https://leetcode.cn/problems/median-of-two-sorted-arrays 给定两个大小分别为 m 和 n 的正序(从小到大)数组 n ...

  2. leetcode-4. 寻找两个正序数组的中位数

    leetcode-4. 寻找两个正序数组的中位数. 给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2. 请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(l ...

  3. Leetcode随缘刷题之寻找两个正序数组的中位数

    我一上来没读清题,想着这题这么简单,直接就上手写了: package leetcode.day_12_05; import java.util.ArrayList; import java.util. ...

  4. 微软面试题: LeetCode 4. 寻找两个正序数组的中位数 hard 出现次数:3

    题目描述: 给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2.请你找出并返回这两个正序数组的中位数. 进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决 ...

  5. 【LeetCode】4. Median of Two Sorted Arrays 寻找两个正序数组的中位数

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:数组,中位数,题解,leetcode, 力扣,python ...

  6. [LeetCode]4.寻找两个正序数组的中位数(Java)

    原题地址: median-of-two-sorted-arrays 题目描述: 示例 1: 输入:nums1 = [1,3], nums2 = [2] 输出:2.00000 解释:合并数组 = [1, ...

  7. Leetcode4. 寻找两个正序数组的中位数

    > 简洁易懂讲清原理,讲不清你来打我~ 输入两个递增数组,输出中位数![在这里插入图片描述](https://img-blog.csdnimg.cn/25550994642144228e9862 ...

  8. 寻找两个已序数组中的第k大元素

    寻找两个已序数组中的第k大元素 1.问题描述 给定两个数组与,其大小分别为.,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第大的元素,其中,.例如,对于数组,.我们记第大的 ...

  9. 【算法剖析】寻找两个已序数组中的第k大元素

    1.问题描述 给定两个数组A与B,其大小分别为m.n,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第k大的元素,其中,1\le k\le(m+n).例如,对于数组A=[1, ...

随机推荐

  1. ng mock服务器数据

    angualr文档 in-memory-web-api 文档 安装 yarn add angular-in-memory-web-api -S src/app/app.module.ts import ...

  2. 磁盘使用率/文件大小查看指南du & df

    一.前言 磁盘使用率,文件大小查看是我们日常使用命令.这两个是配合使用的,磁盘使用率过高告警了,那么得找到对应的磁盘(df),然后找到对应磁盘下的哪个目录和文件占用了空间(du). df(Disk f ...

  3. HTTP状态响应码解析

    # HTTP响应状态码 ## 1xx:临时响应 #### 表示临时响应并需要请求者继续执行操作的状态代码. 100 **继续**请求者应当继续提出请求.服务器返回此代码表示已收到请求的第一部分,正在等 ...

  4. SSL/TLS协议详解(上):密码套件,哈希,加密,密钥交换算法

    本文转载自SSL/TLS协议详解(上):密码套件,哈希,加密,密钥交换算法 导语 作为一名安全爱好者,我一向很喜欢SSL(目前是TLS)的运作原理.理解这个复杂协议的基本原理花了我好几天的时间,但只要 ...

  5. C++实现String类

    1 #include<iostream> 2 #include<cstring> 3 4 class String 5 { 6 public: 7 String(); 8 St ...

  6. Hive-常见调优方式 && 两个面试sql

    Hive作为大数据领域常用的数据仓库组件,在设计和开发阶段需要注意效率.影响Hive效率的不仅仅是数据量过大:数据倾斜.数据冗余.job或I/O过多.MapReduce分配不合理等因素都对Hive的效 ...

  7. Redis与Spring Data Redis

    1.Redis概述 1.1介绍 官网:https://redis.io/ Redis是一个开源的使用ANSIC语言编写.支持网络.可基于内存 亦可持久化的日志型.Key-Value型的高性能数据库. ...

  8. JUnit5学习之八:综合进阶(终篇)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  9. mpvue 开发微信小程序搭建项目

    首先 mpvue 是一款基于vue的框架,mpvue 修改了 Vue.js 的 runtime 和 compile 实现,可以运行在小程序的环境中. 第一步:安装 vue-cli vue-cli是vu ...

  10. .Net Core 处理跨域问题Response to preflight request doesn't pass access control check: No 'Access-Control-Allow-Origin' header is present on the requested resource

    网页请求报错: Response to preflight request doesn't pass access control check: No 'Access-Control-Allow-Or ...